The eye lens is a useful tissue for studying phenomena related to aging since it can be separated into differentially aged or matured zones. This work establishes correlations between ubiquitin-lens protein conjugating capabilities and age, as well as the stage of maturation of bovine lens tissue. When exogenous 125I-ubiquitin was combined with supernatants of epithelial (least mature), cortex, and core (most mature) tissue, ATP-dependent conjugation of 125I-ubiquitin to lens proteins was most effective with the epithelial tissue preparation. Conjugate formation was greatest when lenses were obtained from young animals. Supernatants from cultured bovine lens epithelial (BLE) cells conjugated more 125I-ubiquitin to lens proteins than any tissue preparation. In all cases the predominant conjugates formed in these cell-free assays were of high molecular mass, although conjugates with masses in the 25-70 kDa range were also observed. Lens tissue and cultured BLE cell preparations were also probed with antibodies to ubiquitin to detect in vivo ubiquitin-lens protein conjugates. There was more free ubiquitin and ubiquitin conjugates in tissue from young as compared with older lenses. The greatest levels of conjugates were observed in cultured BLE cells. Specificity in the ubiquitination system is indicated since some of the conjugates formed in vivo appear identical to those formed in the cell-free assays and in reticulocytes using exogenous 125I-ubiquitin. Upon development and maturation of lens tissue (i.e., core as opposed to epithelium), there is accumulation of lower molecular mass conjugates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0003-9861(90)90006-k | DOI Listing |
Int J Pharm
January 2025
Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad Telangana India. Electronic address:
Supramolecular polymers represent a distinctive class of polymers exhibiting similarities with covalent polymers, while also showcasing distinctive attributes such as responsiveness, reversibility, self-healing, and dynamism, which are conferred upon them by non-covalent interactions including hydrogen bonding, electrostatic interactions, van der Waals forces, π-π arrangements, and donor-acceptor interactions, among others. The noteworthy features of these supramolecular polymers have attracted considerable interest across diverse fields of science and technology, spanning electrochemistry, environmental science, drug delivery and tissue engineering. Nonetheless, the prevailing research focus in the realm of supramolecular polymers revolves around the advancement of novel methodologies aimed at synthesizing a broad spectrum of polymers characterized by diverse topologies.
View Article and Find Full Text PDFUltrasonics
January 2025
Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK. Electronic address:
A new focussed ultrasound surgery (FUS) transducer for soft tissue ablation is proposed, with a miniaturised configuration that can be readily integrated with a surgical robot. The transducer fills a gap in FUS technology at this size, with capability for acoustic focus steering within a very simple transducer configuration. Miniaturisation is enabled by the incorporation of an acoustic Fresnel lens as the focussing element driven by a single piezoceramic disc.
View Article and Find Full Text PDFPLoS One
January 2025
Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
DNA methylation is known to be associated with cataracts. In this study, we used a mouse model and performed DNA methylation and transcriptome sequencing analyses to find epigenetic indicators for age-related cataracts (ARC). Anterior lens capsule membrane tissues from young and aged mice were analyzed by MethylRAD-seq to detect the genome-wide methylation of extracted DNA.
View Article and Find Full Text PDFIn living organisms, the natural motion caused by heartbeat, breathing, or muscle movements leads to the deformation of tissue caused by translation and stretching of the tissue structure. This effect results in the displacement or deformation of the plane of observation for intravital microscopy and causes motion-induced aberrations of the resulting image data. This, in turn, places severe limitations on the time during which specific events can be observed in intravital imaging experiments.
View Article and Find Full Text PDFSpecimen-induced aberrations limit the penetration depth of standard optical imaging techniques in vivo, mainly due to the propagation of high NA beams in a non-homogenous medium. Overcoming these limitations requires complex optical imaging systems and techniques. Implantable high NA micro-optics can be a solution to tissue induced spherical aberrations, but in order to be implanted, they need to have reduced complexity, offering a lower surface to the host immune reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!