The kinetics of aromatic nucleophilic substitution of the nitric oxide generating diazeniumdiolate ion, DEA/NO, by thiols, (L-glutathione, L-cysteine, DL-homocysteine, 1-propanethiol, 2-mercaptoethanol and sodium thioglycolate) from the prodrug, DNP-DEA/NO, has been examined in aqueous solution and in solutions of cationic DOTAP vesicles. Second-order rate constants in buffered aqueous solutions (k(RS(-) ) = 3.48 - 30.9 M(-1)s(-1); 30 °C) gave a linear Brønsted plot (β(nuc) = 0.414 ± 0.068) consistent with rate-limiting S(N)Ar nucleophilic attack by thiolate ions. Cationic DOTAP vesicles catalyze the thiolysis reactions with rate enhancements between 11 and 486-fold in Tris-HCl buffered solutions at pH 7.4. The maximum rate increase was obtained with thioglycolate ion. Thiolysis data are compared to data for nucleophilic displacement by phenolate (k(PhO(-) ) = 0.114 M(-1)s(-1)) and hydroxide (k(OH(-) ) = 1.82 × 10(-2) M(-1)s(-1), 37 °C) ions. The base hydrolysis reaction is accelerated by CTAB micelles and DODAC vesicles with vesicles being ca 3-fold more effective as catalysts. Analysis of the data using pseudophase ion-exchange formalism implies that the rate enhancement of the thiolysis and base hydrolysis reactions is due primarily to reactant concentration in the surfactant pseudophase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083076PMC
http://dx.doi.org/10.1002/poc.1607DOI Listing

Publication Analysis

Top Keywords

cationic dotap
8
dotap vesicles
8
m-1s-1 °c
8
base hydrolysis
8
nucleophilic
4
nucleophilic reactivity
4
reactivity thiolate
4
thiolate hydroxide
4
hydroxide phenolate
4
phenolate ions
4

Similar Publications

Standard-of-care influenza vaccines contain antigens that are typically derived from components of wild type (WT) influenza viruses. Often, these antigens elicit strain-specific immune responses and are susceptible to mismatch in seasons where antigenic drift is prevalent. Thanks to advances in viral surveillance and sequencing, influenza vaccine antigens can now be optimized using computationally derived methodologies and algorithms to enhance their immunogenicity.

View Article and Find Full Text PDF

Cationic liposomes as carriers of natural compounds from plant extract.

Biophys Chem

December 2024

Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.

Lipid-based nanocarriers provide versatile platforms for the encapsulation and delivery of many different bioactive compounds to improve the solubility, stability and therapeutic efficacy of bioactive phyto-compounds. In this study, liposomes were used to load leaf extract of Coffea Arabica, which is known to be rich beneficial substances such as alkaloids, flavonoids, etc. The aim of this work is to optimize the valorization of agricultural wastes containing natural antioxidants.

View Article and Find Full Text PDF
Article Synopsis
  • Ionizable cationic lipids, particularly DOTAP, are used to enhance lipid nanoparticle (LNP) delivery while mitigating toxicity, showing a better T-cell response through microfluidic techniques compared to traditional methods.
  • * The study evaluated DOTAP-based delivery systems for plasmid DNA encoding the SARS-CoV-2 receptor-binding domain, finding effective delivery in muscle tissue but also significant adverse effects in multiple organs.
  • * Results indicate that while DOTAP-LNPs effectively target the lungs and spleen, they cause dose-dependent inflammatory responses and tissue injuries, highlighting the need for careful dosing in immunization strategies.
View Article and Find Full Text PDF

Phase-separated cationic giant unilamellar vesicles as templates for the polymerization of tetraethyl orthosilicate (TEOS).

Biochim Biophys Acta Biomembr

February 2025

Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.

Unlike homogeneous liposomes, phase-separated liposomes have the potential to be attractive soft materials because they exhibit different properties for each phase. In this study, phase separation was observed when liposomes were prepared using 1,2-dioleoyloxy-3-trimethylammonium propane chloride (DOTAP), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and cholesterol. The pH of the DOTAP-rich phase was evaluated using a coumarin derivative, and measurements showed that DOTAP molecules accumulated hydroxyl ions (OH) in the DOTAP-rich phase.

View Article and Find Full Text PDF

Cooperative photobiocatalytic processes have seen extensive potentials for the synthesis of both bulk and fine chemicals owing to their versatility, eco-friendliness, and cost-effectiveness. Nevertheless, developing a universal and effective synthetic strategy compatible with both catalytic systems remains challenging. In this study, we explored cationic liposomes as biocompatible photocatalyst encapsulation systems and combined them with bacteria overexpressing enzymes for two-step and three-step cascade reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!