A Theoretical Investigation of the Ni(II)-Catalyzed Hydrovinylation of Styrene.

Organometallics

School of Chemistry, University of Hyderabad, Central University P. O., Hyderabad 500046, India, Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India, Indian Institute of Science Education and Research, Thiruvananthapuram, CET Campus, Kerala 695016, India, and Department of Chemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210.

Published: June 2009

We report a detailed and full computational investigation on the hydrovinylation reaction of styrene with the Ni(II)-phospholane catalytic system, which was originally presumed to proceed through a cationic mechanism involving a nickel hydride intermediate. The following general features emerge from this study on a specific catalyst complex that was found to give quantitative yield and moderate selectivity: (a) the activation barrier for the initiation (18.8 kcal/mol) is higher than that for the reaction due to a low-lying square-planar pentenyl chelate intermediate originating from a Ni(II)-allyl catalyst precursor. Consequently there is an induction period for the catalysis; (b) the exit of product from the catalyst is via a β-H-transfer step instead of the usual β-H elimination pathway, which has a very high activation energy due to a trans effect of the phospholane ligand; (c) the turnover-limiting and enantio- determining transition state is also the β-H-transfer; (d) because of the absence of a hydride intermediate, the unwanted isomerization of the product is prevented; (e) since the enantio-discrimination is decided at the H-transfer stage itself, the configuration of the product in a catalytic cycle influences the enantioselectivity in the subsequent cycle; (f) the trans effect of the sole strong ligand in the d8 square-planar Ni(II), the stability of the η(3)-benzyl intermediate, and the availability of three coordination sites enable regioselective hydrovinylation over the possible oligomerization/polymerization of the olefin substrates and linear hydrovinylation. This work has also confirmed the previously recognized role of the hemilabile group at various stages in the mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083920PMC
http://dx.doi.org/10.1021/om900045pDOI Listing

Publication Analysis

Top Keywords

hydride intermediate
8
theoretical investigation
4
investigation niii-catalyzed
4
hydrovinylation
4
niii-catalyzed hydrovinylation
4
hydrovinylation styrene
4
styrene report
4
report detailed
4
detailed full
4
full computational
4

Similar Publications

Rhodium-Catalyzed Homogeneous Asymmetric Hydrogenation of Naphthol Derivatives.

J Am Chem Soc

January 2025

National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.

Due to their strong aromaticity and difficulties in chemo-, regio-, and enantioselectivity control, asymmetric hydrogenation of naphthol derivatives to 1,2,3,4-tetrahydronaphthols has remained a long-standing challenge. Herein, we report the first example of homogeneous asymmetric hydrogenation of naphthol derivatives catalyzed by tethered rhodium-diamine catalysts, affording a wide array of optically pure 1,2,3,4-tetrahydronaphthols in high yields with excellent regio-, chemo-, and enantioselectivities (up to 98% yield and >99% ee). Mechanistic studies with experimental and computational approaches reveal that fluorinated solvent 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) plays vital roles in the control of reactivity and selectivity, and 1-naphthol is reduced via a cascade reaction pathway, including dearomative tautomerization, 1,4-hydride addition, and 1,2-hydride addition in sequence.

View Article and Find Full Text PDF

We report the synthesis and characterization of bis(diiminate)-supported tricoordinated zinc complexes () and demonstrate the catalytic activity of one representative compound in the hydroboration of nitriles and carbodiimides using pinacolborane (HBpin). Experimental and theoretical studies were performed to elucidate the reaction mechanism. Our findings indicate that the hydroboration reaction initiates with the formation of a tricoordinated zinc hydride intermediate, followed by the subsequent attack of nitriles and carbodiimides.

View Article and Find Full Text PDF

Palladium-Catalyzed Oxidative Allene-Allene Cross-Coupling.

J Am Chem Soc

January 2025

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.

Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner.

View Article and Find Full Text PDF

Cathodic corrosion is an electrochemical phenomenon that etches metals at moderately negative potentials. Although cathodic corrosion probably occurs by forming a metal-containing anion, such intermediate species have not yet been observed. Here, aiming to resolve this long-standing debate, our work provides such evidence through X-ray absorption spectroscopy.

View Article and Find Full Text PDF

Molecular Phosphide Complexes of Zirconium.

J Am Chem Soc

January 2025

Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States.

Molecular Zr phosphides are extremely rare, with no examples containing a one-coordinated and terminal triple-bonded phosphorus atom. We report here an isolable and relatively stable Zr phosphide complex, [(PN)Zr≡P{μ-Na(OEt)}] (), stemming from a cyclometalated Zr-hydride, [(PN)(PN')Zr(H)] (), and NaPH. Complex is prepared from two- or one-electron reductions of precursors [(PN)ZrCl] () or metastable Zr[(PN)ZrCl], respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!