We report in this study that, in the presence of magnesium, bath application of micromolar concentrations of glycine have prominent effects on synaptic events and N-methyl-D-aspartate (NMDA) responses in neonatal but not in adult hippocampal slices. Intracellular recordings were made from 71 rat CA3 hippocampal neurons in neonatal slices. In keeping with our earlier study, during the first postnatal week, CA3 neurons exhibited giant depolarizing potentials (GDPs). These GDPs are mediated by gamma-aminobutyric acid (GABA) acting on type A GABA (GABAA) receptors and modulated presynaptically by NMDA receptors. In the majority of cells (18 out of 31), glycine (10-30 microM) increased the frequency of GDPs (from 0.14 to 0.29 Hz). This effect was mimicked by D-serine (10-20 microM) and blocked by the NMDA receptor antagonists D-(-)-2-amino-5-phosphonovalerate (50 microM) and DL-2-amino-7-phosphonoheptanoate (50 microM) and by the GABAA antagonist bicuculline (10 microM) but not by strychnine (1 microM). Subthreshold concentrations of glycine (or D-serine) and NMDA, when given together, enhanced synaptic noise and the frequency of GDPs. In the presence of tetrodotoxin (1 microM), glycine and D-serine (up to 50 microM) did not modify the NMDA-induced inward currents in CA3 pyramidal cells. However the reduction of NMDA-mediated currents by 7-chlorokynurenate (10-20 microM) was reversed by glycine and D-serine (100-200 microM). In contrast, glycine (up to 100 microM) had no effect on membrane potential, input resistance, or NMDA responses after postnatal day 10. It is concluded that GABA-mediated events are facilitated by glycine acting on presynaptically located NMDA receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC53259 | PMC |
http://dx.doi.org/10.1073/pnas.87.1.343 | DOI Listing |
Int J Neuropsychopharmacol
December 2024
Neurocrine Biosciences, Inc., San Diego, CA, United States.
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has been proposed to underlie the pathophysiology of schizophrenia, suggesting that promoting NMDAR activity may alleviate the negative or cognitive symptoms associated with schizophrenia. To circumvent excitotoxicity that may accompany direct agonism of the glutamate binding site on the NMDAR, therapeutic trials have focused on targeting the glycine binding site on the NMDAR. Direct administration of either glycine or D-serine, both of which are endogenous coagonists at the NMDAR glycine site, has yielded mixed outcomes across an array of clinical trials investigating different doses or patient populations.
View Article and Find Full Text PDFSchizophrenia (Heidelb)
December 2024
CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
Schizophrenia (SCZ) is a severe psychotic disorder characterized by a disruption in glutamatergic NMDA receptor (NMDAR)-mediated neurotransmission. Compelling evidence has revealed that NMDAR activation is not limited to L-glutamate, L-aspartate, and glycine since other free amino acids (AAs) in the atypical D-configuration, such as D-aspartate and D-serine, also modulate this class of glutamatergic receptors. Although dysregulation of AAs modulating NMDARs has been previously reported in SCZ, it remains unclear whether distinct variations of these biomolecules occur during illness progression from at-risk premorbid to clinically manifest stage.
View Article and Find Full Text PDFYakugaku Zasshi
December 2024
Department of Pharmacology, Faculty of Pharmaceutical Science, Health Sciences University of Hokkaido.
Mol Genet Metab
November 2024
Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA. Electronic address:
The recognition of glycine as an endogenous ligand at the allosteric activation site of the NMDA-type glutamatergic receptor led to the assumption that the excess glycine in nonketotic hyperglycinemia would result in overactivation of these receptors, and of the proposed use of inhibitors such as dextromethorphan or ketamine as a therapeutic agent. Years later it was recognized that these same receptors have an alternative endogenous activator d-serine, which is markedly decreased in nonketotic hyperglycinemia. This may result in underactivation of these NMDA-type glutamatergic receptors, challenging the earlier hypothesis.
View Article and Find Full Text PDFBiol Psychiatry
January 2025
New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York. Electronic address:
Cognitive impairment associated with schizophrenia (CIAS) and related deficits in learning (plasticity) are among the leading causes of disability in schizophrenia. Despite this, there are no Food and Drug Administration-approved treatments for CIAS, and the development of treatments has been limited by numerous phase 2/3 failures of compounds that showed initial promise in small-scale studies. NMDA-type glutamate receptors (NMDARs) have been proposed to play an important role in schizophrenia; moreover, the NMDAR has a well-characterized role in cognition, learning, and neuroplasticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!