Curcumin is a polyphenol that is commonly used for its perceived health benefits. However, the absorption efficacy of curcumin is too low to exhibit beneficial effects. We have successfully developed a highly absorptive curcumin dispersed with colloidal nano-particles, and named it THERACURMIN. The absorption efficacy of THERACURMIN was investigated and compared with that of curcumin powder. The area under the blood concentration-time curve (AUC) after the oral administration of THERACURMIN was found to be more than 40-fold higher than that of curcumin powder in rats. Then, healthy human volunteers were administered orally 30 mg of THERACURMIN or curcumin powder. The AUC of THERACURMIN was 27-fold higher than that of curcumin powder. In addition, THERACURMIN exhibited an inhibitory action against alcohol intoxication after drinking in humans, as evidenced by the reduced acetaldehyde concentration of the blood. These findings demonstrate that THERACURMIN shows a much higher bioavailability than currently available preparations. Thus, THERACURMIN may be useful to exert clinical benefits in humans at a lower dosage.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.34.660DOI Listing

Publication Analysis

Top Keywords

curcumin powder
16
curcumin
8
absorption efficacy
8
theracurmin
8
higher curcumin
8
innovative preparation
4
preparation curcumin
4
curcumin improved
4
improved oral
4
oral bioavailability
4

Similar Publications

Precipitation Polymerization-Based Molecularly Imprinted Polymers: A Novel Approach for Transdermal Curcumin Delivery.

Polymers (Basel)

December 2024

Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia.

This research describes the synthesis and characterization of a molecularly imprinted polymer (MIP) as a candidate for the transdermal delivery of curcumin. The MIP was synthesized through precipitation polymerization using methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking agent. MIP characterization studies were conducted using SEM-EDX and FTIR spectroscopy to determine the morphology and interaction between curcumin and polymers.

View Article and Find Full Text PDF

Background/objectives: Curcumin is well known for its great anti-inflammatory and antioxidant efficacy, representing a potential strategy for the treatment of respiratory disorders. However, several drawbacks, such as chemical instability, poor water solubility and rapid metabolism, result in low bioavailability, limiting its clinical applications. In this study, curcumin nanocrystals were incorporated into mannitol-based microparticles to obtain an inhalable dry powder.

View Article and Find Full Text PDF

Latent fingerprints (LFPs) are invisible impressions that need to be developed before being used for criminal investigation; however, existing fingerprint visualization techniques face challenges, such as complex preparation and poor contrast. To advance practical fingerprint detection, green-emissive micron-sized curcumin/kaolin composites were synthesized a facile and cost-effective one-step physical cross-linking method, which exhibited unprecedented performance in developing diversified marks, including LFPs, knuckle prints, palm prints, and footprints, with clear three-level details on various substrates. Notably, the powders successfully developed LFPs that were aged for 30 days and even up to 100 days, meeting the stringent requirements for comprehensive forensic application.

View Article and Find Full Text PDF

A novel polyimide-bridge covalent organic framework-based (PI-COF) hybrid was synthesized through simple green chemistry between PI-COF and MCM-NH monomers as a pH-sensitive anticancer curcumin (C) delivery system. The synthesized nanohybrid was crystalline in nature with an improved surface area and pore volume compared to the base COF, certified by powder X-ray diffraction spectroscopy and Brunauer-Emmett-Teller technique. Kinetically controlled and sustained curcumin release profiles were investigated using the as-prepared curcumin-loaded drug delivery systems (C@DDSs) in neutral and acidic pH media.

View Article and Find Full Text PDF

Microencapsulation of Pickering nanoemulsions containing walnut oil stabilized using soy protein-curcumin composite nanoparticles: Fabrication and evaluation of a novel plant-based milk substitute.

Food Chem

December 2024

School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China. Electronic address:

Plant protein-stabilized Pickering nanoemulsions show potential as plant-based milk substitutes; however, their stability is challenged by mechanical stress during transportation and oxidative deterioration during storage. Herein, soybean isolate protein-curcumin composite nanoparticle (SPI-Cur-NPs)-stabilized Pickering nanoemulsions were converted into microcapsule powders via spray-drying with maltodextrin (MD), trehalose anhydrous (TA), and inulin (IN) as wall materials. Robust intermolecular hydrogen bonds and an amorphous structure were formed using composite wall materials, reducing microcapsule surface fissures while improving encapsulation rate (92.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!