Associations between fungal species and water-damaged building materials.

Appl Environ Microbiol

Center for Microbial Biotechnology, DTU Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.

Published: June 2011

Fungal growth in damp or water-damaged buildings worldwide is an increasing problem, which has adverse effects on both the occupants and the buildings. Air sampling alone in moldy buildings does not reveal the full diversity of fungal species growing on building materials. One aim of this study was to estimate the qualitative and quantitative diversity of fungi growing on damp or water-damaged building materials. Another was to determine if associations exist between the most commonly found fungal species and different types of materials. More than 5,300 surface samples were taken by means of V8 contact plates from materials with visible fungal growth. Fungal identifications and information on building material components were analyzed using multivariate statistic methods to determine associations between fungi and material components. The results confirmed that Penicillium chrysogenum and Aspergillus versicolor are the most common fungal species in water-damaged buildings. The results also showed Chaetomium spp., Acremonium spp., and Ulocladium spp. to be very common on damp building materials. Analyses show that associated mycobiotas exist on different building materials. Associations were found between (i) Acremonium spp., Penicillium chrysogenum, Stachybotrys spp., Ulocladium spp., and gypsum and wallpaper, (ii) Arthrinium phaeospermum, Aureobasidium pullulans, Cladosporium herbarum, Trichoderma spp., yeasts, and different types of wood and plywood, and (iii) Aspergillus fumigatus, Aspergillus melleus, Aspergillus niger, Aspergillus ochraceus, Chaetomium spp., Mucor racemosus, Mucor spinosus, and concrete and other floor-related materials. These results can be used to develop new and resistant building materials and relevant allergen extracts and to help focus research on relevant mycotoxins, microbial volatile organic compounds (MVOCs), and microparticles released into the indoor environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131638PMC
http://dx.doi.org/10.1128/AEM.02513-10DOI Listing

Publication Analysis

Top Keywords

building materials
24
fungal species
16
materials
9
species water-damaged
8
water-damaged building
8
fungal growth
8
damp water-damaged
8
water-damaged buildings
8
determine associations
8
material components
8

Similar Publications

Experiences, perceptions and ethical considerations of the malaria infection study in Thailand.

BMC Med Ethics

January 2025

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Thunphayathai, Bangkok, 10400, Thailand.

Background: Thailand has made significant progress in malaria control efforts in the past decade, with a decline in the number of reported cases. However, due to cross-border movements over the past 5 years, reported malaria cases in Thailand have risen. The Malaria Infection Study in Thailand (MIST) involves deliberate infection of healthy volunteers with Plasmodium vivax malaria parasites, and the assessment of the efficacy of potential vaccine and drug candidates in order to understand acquired protection against malaria parasites.

View Article and Find Full Text PDF

Background: To address the growing demand for psychological treatment, healthcare providers are increasingly utilising low-intensity interventions, characterised by reduced practitioner contact and emphasis on independent patient engagement with therapeutic materials through between-session work (BSW). While BSW is critical for maximising treatment outcomes, patients and practitioners report challenges with its completion. Research identifying factors influencing between-session engagement in Cognitive Behavioural Therapy (CBT) has largely focused on high-intensity CBT, limiting understanding within low-intensity contexts.

View Article and Find Full Text PDF

Formaldehyde is considered as a significant contaminant. This study aimed to perform comprehensive research with systematic review, health risk estimation, meta-analysis, and Monte Carlo simulation to evaluate exposure to formaldehyde at different seasons of the year in various indoor environments. A systematic literature review was initially performed.

View Article and Find Full Text PDF

Electrocatalytic materials with dual functions of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have received increasing attention in the field of zinc-air batteries (ZABs) research. In this study, bifunctional CoNC@NCXS catalysts were prepared by anchoring Co and N co-doped CoNC on N-doped carbon xerogel sphere (NCXS) based on the spatially confined domain effect and in-situ doping technique. CoNC@NCXS exhibited excellent ORR/OER activity in alkaline electrolytes with the ORR onset potential of 0.

View Article and Find Full Text PDF

This research investigates the potential of utilizing types of construction waste as partial cement replacements within concrete formulations. Notably, granodiorite and ceramic powders were introduced at varying substitution ratios. The impact of these waste materials on the compressive strength and radiation shielding effectiveness of traditional concrete was evaluated under both ambient and elevated temperature conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!