A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Direct electrochemistry and electrocatalysis of hemoglobin in composite film based on ionic liquid and NiO microspheres with different morphologies. | LitMetric

Flowerlike, spherical, and walnutlike NiO microspheres were respectively mixed with ionic liquid (IL) to form three stable composite films, which were used to immobilize hemoglobin (Hb) on carbon paste electrodes. Spectroscopic and electrochemical examinations revealed that the three NiO/IL composites were biocompatible matrix for immobilizing Hb, which showed good stability and bioactivity. However, electrochemical studies demonstrated that flowerlike NiO microspheres were far more effective than the other two in adsorbing Hb and facilitating the electron transfer between Hb and underlying electrode, which resulted from its unique flower architecture and large surface area. With advantages of flowerlike NiO and ionic liquid, a pair of stable and well-defined quasi-reversible redox peaks of Hb were obtained with a formal potential of -0.275 V (vs. Ag/AgCl) in pH 7.0 buffer. Meantime, flowerlike NiO modified electrode showed better electrocatalytic activity toward hydrogen peroxide reduction with a high sensitivity (15.7μAmM(-1)), low detection limit (0.68 μM) and small apparent Michaelis-Menten constant K(M) (0.18 mM). Flowerlike NiO could be a promising matrix for the fabrication of direct electrochemical biosensors in biomedical analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2011.03.039DOI Listing

Publication Analysis

Top Keywords

flowerlike nio
16
ionic liquid
12
nio microspheres
12
nio
6
flowerlike
5
direct electrochemistry
4
electrochemistry electrocatalysis
4
electrocatalysis hemoglobin
4
hemoglobin composite
4
composite film
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!