Effect of ignition condition on typical polymer's melt flow flammability.

J Hazard Mater

State Key Laboratory of Fire Science, University of Science and Technology of China (USTC), Jinzhai Road 96, Hefei 230027, PR China.

Published: June 2011

Polymer's melt flow behavior has triggered great interest due to the mutual-enhancing loop effect between vertical polymer fire and the induced flowing pool fire. The aim of the study was to quantitatively investigate the effect of ignition conditions on the polymer's melt flow flammability. Polypropylene (PP) sheets with a thickness of 4mm were selected as the test samples. An experimental rig was designed to study the interaction between the vertical PP sheet fire and the corresponding pool fire. Ignition was achieved at three locations, i.e. the lower right corner, the lower middle edge, and the whole lower edge of the PP sheets. All tests were conducted in an ISO9705 fire test room. Heat release rate, smoke temperature and other common parameters in fire hazard analysis were measured with the help of the fire room facilities. Results indicated that ignition conditions evidently impact on heat release rate development, peak heat release rate, smoke temperature, smoke generation and smoke toxicity. Furthermore, these experimental results preliminarily demonstrated the feasibility of the designed setup in studying interaction between vertical polymer sheet fire and the induced pool fire, although further modification may be needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2011.03.108DOI Listing

Publication Analysis

Top Keywords

polymer's melt
12
melt flow
12
pool fire
12
heat release
12
release rate
12
fire
9
flow flammability
8
vertical polymer
8
fire induced
8
ignition conditions
8

Similar Publications

Polymeric materials made from renewable sources that can biodegrade in the environment are attracting considerable attention as substitutes for petroleum-based polymers in many fields, including additive manufacturing and, in particular, Fused Deposition Modelling (FDM). Among the others, poly(hydroxyalkanoates) (PHAs) hold significant potential as candidates for FDM since they meet the sustainability and biodegradability standards mentioned above. However, the most utilised PHA, consisting of the poly(hydroxybutyrate) (PHB) homopolymer, has a high degree of crystallinity and low thermal stability near the melting point.

View Article and Find Full Text PDF

Synthesis and characterization of thermoplastic resin from sugar beet polysaccharides via one-step transesterification.

Carbohydr Polym

March 2025

Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan. Electronic address:

Lignocellulosic biomass-based plastics provide a sustainable alternative to petroleum-based plastics by converting agricultural by-products into value-added materials, promoting a circular economy. This study investigates the development of thermoplastics from sugar beet pulp (SBP), a by-product rich in cellulose and pectin. A one-pot direct transesterification process was used to fully substitute hydroxy groups in SBP with acyl chains of varying lengths (C2-C10), achieving up to 96 % substitution.

View Article and Find Full Text PDF

To strengthen starch gel quality and improve the deterioration from freeze-thaw cycles, corn starch/whey protein isolate (WPI)/caffeic acid (CA) composite gels were rationally constructed in this study. The results showed that the introduction of WPI and CA significantly optimized the microstructure of the gels, an observation verified by SEM and CLSM. In addition, FT-IR and XRD analyses further revealed that the interaction mechanism within the composite gel was mainly due to the reinforcement of hydrogen bonds.

View Article and Find Full Text PDF

A Microwave-Strengthened Supramolecular Adhesive: from Flexible Pressure Sensitive Bonding to Strong and Muti-Reusable Hot Melt Bonding.

Small

January 2025

Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

A microwave-strengthened supramolecular adhesive by introducing maleic acid amide bonds into the cross-linked networks of catechol-based monomers and iron oxide nanoparticles is reported. Under microwave irradiation, the supramolecular adhesive can be rapidly heated up, causing the transformation from maleic acid amide bonds to maleimide bonds and thus the increase of its cohesive strength. The supramolecular adhesive can flexibly bond substrates like pressure sensitive adhesives during the bonding procedure and shows an adhesion strength of 0.

View Article and Find Full Text PDF

Metallic biomaterials are extensively used in orthopedics and dentistry, either as implants or coatings. In both cases, metal ions come into contact with surrounding tissues causing a particular cell response. Here, we present a biofabricated tissue model, consisting of a hydrogel reinforced with a melt electrowritten mesh, to study the effects of bound and released metal ions on surrounding cells embedded in a hydrogel matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!