AI Article Synopsis

  • The study compares ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments on biomass, focusing on their effects on structure, composition, and enzymatic breakdown.
  • AFEX retains plant carbohydrates while IL removes 76% of hemicellulose, disrupting the corn stover's crystal structure during the process.
  • Both methods achieve over 70% sugar yield in 48 hours, but IL pretreatment is more efficient in enzyme use and hydrolysis time, revealing individual strengths and weaknesses of the two approaches.

Article Abstract

Ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments were studied to develop the first direct side-by-side comparative assessment on their respective impacts on biomass structure, composition, process mass balance, and enzymatic saccharification efficiency. AFEX pretreatment completely preserves plant carbohydrates, whereas IL pretreatment extracts 76% of hemicellulose. In contrast to AFEX, the native crystal structure of the recovered corn stover from IL pretreatment was significantly disrupted. For both techniques, more than 70% of the theoretical sugar yield was attained after 48 h of hydrolysis using commercial enzyme cocktails. IL pretreatment requires less enzyme loading and a shorter hydrolysis time to reach 90% yields. Hemicellulase addition led to significant improvements in the yields of glucose and xylose for AFEX pretreated corn stover, but not for IL pretreated stover. These results provide new insights into the mechanisms of IL and AFEX pretreatment, as well as the advantages and disadvantages of each.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2011.04.005DOI Listing

Publication Analysis

Top Keywords

corn stover
12
ionic liquid
8
afex pretreated
8
pretreated corn
8
afex pretreatment
8
afex
6
pretreatment
5
influence physico-chemical
4
physico-chemical changes
4
changes enzymatic
4

Similar Publications

Lignocellulosic waste, like corn stover (CS), is widely produced and serves as a key feedstock for biofuels and biochemicals. Semi-continuous subcritical water hydrolysis (SWH) is an eco-friendly method that breaks down cellulose and hemicellulose bonds. To boost fermentable sugar (FS) yields, steam explosion (SE) pretreatment was tested on CS, achieving a cellulose content of 74.

View Article and Find Full Text PDF

The present study reports the ability of a fungal isolate DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS for identifying degradation products at different time intervals (10, 20, 30, and 40 days). The optimal degradation of alkali lignin (AL) was achieved at 0.

View Article and Find Full Text PDF

Characterization and rational engineering of a novel laccase from Geobacillus thermocatenulatus M17 for improved lignin degradation activity.

Int J Biol Macromol

December 2024

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China. Electronic address:

Lignin, with its complex, high-molecular-weight aromatic polymer structure and stable ether or ester bonds, greatly impedes the efficient degradation of lignocellulosic waste. Bacterial laccases have gained attention for their potential in lignocellulosic waste degradation due to their resilience in extreme conditions and ability to be produced in large quantities. In this study, a novel laccase from Geobacillus thermocatenulatus M17 was identified and expressed in E.

View Article and Find Full Text PDF

Sustainable High-Performance Structural Materials from Micro/nanostructured Corn Stover.

Nano Lett

December 2024

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

Corn stover, as an abundant agricultural residue, has not been well reutilized due to the lack of efficient utilization methods. Based on micro/nanoscale structure design of corn stover, we report an environmentally friendly strategy to prepare micro/nanostructured corn stover-based building blocks. Then, through the directed deformation assembly approach, a high value-added corn stover structural material (CSSM) that with higher strength and more excellent thermal stability than most widely used plastics and wood-plastic composites can be prepared.

View Article and Find Full Text PDF

Enhancing D-lactic acid production from non-detoxified corn stover hydrolysate via innovative F127-IEA hydrogel-mediated immobilization of T15.

Front Microbiol

December 2024

College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China.

Background: The production of D-lactic acid (D-LA) from non-detoxified corn stover hydrolysate is hindered by substrate-mediated inhibition and low cell utilization times. In this study, we developed a novel temperature-sensitive hydrogel, F127-IEA, for efficient D-LA production using a cell-recycle batch fermentation process.

Results: F127-IEA exhibited a porous structure with an average pore size of approximately 1 μm, facilitating the formation of stable clusters within the gel matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!