The correct identification of drying oils plays an essential role in providing an understanding of the conservation and deterioration of artistic materials in works of art. To this end, this work proposes the use of peak area ratios from fatty acids after ensuring that the linear responses of the detector are tested. A GC-MS method, previously reported in the literature, was revisited to its developed and validated in order to identify and quantify of eight fatty acids that are widely used as markers for drying oils in paintings, namely myristic acid (C(14:0)), palmitic acid (C(16:0)), stearic acid (C(18:0)), oleic acid (C(18:1)), linoleic acid (C(18:2)), suberic acid (2C(8)), azelaic acid, (2C(9)) and sebacic acid (2C(10)). The quaternary ammonium reagent m-(trifluoromethyl)phenyltrimethylammonium hydroxide (TMTFAH) was used for derivatization prior to GC-MS analysis of the oils. MS spectra were obtained for each methyl ester derivative of the fatty acids and the characteristic fragments were identified. The method was validated in terms of calibration functions, detection and quantification limits and reproducibility using the signal recorded in SIR mode, since two of the methyl derivatives were not totally separated in the chromatographic run. The proposed method was successfully applied to identify and characterise the most widely used drying oils (linseed oil, poppy seed oil and walnut oil) in the painting La Encarnación. This 17th century easel painting is located in the main chapel of the cathedral in Granada (Spain) and was painted by the well-known artist of the Spanish Golden Age, Alonso Cano (1601-1667).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2011.03.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!