Bendamustine has demonstrated substantial efficacy in the treatment of hematologic malignancies and continues to distinguish itself from other alkylating agents with regard to its activity in tumor cells. The mechanistic and clinical differences associated with bendamustine may be directly related to its unique structural features. Although the precise mechanisms of action are still poorly understood, bendamustine is associated with extensive and durable DNA damage. The increased potency of bendamustine may be due to secondary mechanisms such as inhibition of mitotic checkpoints, inefficient DNA repair, and initiation of p53-dependent DNA-damage stress response, all of which lead to mitotic catastrophe and apoptosis. It has also been hypothesized that the presence of a benzimidazole ring in addition to the nitrogen mustard group may influence the way bendamustine interacts with DNA and/or confer antimetabolite properties. Further elucidation of the mechanisms of action for bendamustine and the signaling pathways involved in the response to bendamustine-induced DNA damage is essential to maximize its therapeutic potential, identify biomarkers for response, and understand the potential for synergy with other agents involved in DNA damage and inhibition of DNA repair. This review will discuss the current understanding and hypotheses regarding bendamustine mechanisms of action and suggest future investigations that would shed light on the many unanswered questions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.seminhematol.2011.03.003 | DOI Listing |
Anal Bioanal Chem
January 2025
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes.
View Article and Find Full Text PDFSci Rep
January 2025
Business School, Hebei University of Economics and Business, Shijiazhuang, 050062, China.
The development and implementation of county carbon control action plans in the Yellow River Basin (YRB) are crucial for realizing the "dual carbon" goals and modernizing national governance. Utilizing remote sensing data from 2001 to 2020, this study constructs a light-carbon conversion model and a carbon footprint model to simulate the carbon footprint of county energy consumption in the YRB. Employing spatial autocorrelation and spatial Durbin models, the study examines the temporal-spatial evolution characteristics and spatial effect mechanism.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Veterinary Medicine, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.
View Article and Find Full Text PDFCardiovasc Res
January 2025
Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China.
Aims: Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and class I HDAC inhibition has been found to attenuate pathological remodeling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!