Vertical bias in neglect: a question of time?

Neuropsychologia

Perception and Eye Movement Laboratory, Department of Neurology, Bern University Hospital Inselspital, and University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland.

Published: July 2011

Neglect is defined as the failure to attend and to orient to the contralesional side of space. A horizontal bias towards the right visual field is a classical finding in patients who suffered from a right-hemispheric stroke. The vertical dimension of spatial attention orienting has only sparsely been investigated so far. The aim of this study was to investigate the specificity of this vertical bias by means of a search task, which taps a more pronounced top-down attentional component. Eye movements and behavioural search performance were measured in thirteen patients with left-sided neglect after right hemispheric stroke and in thirteen age-matched controls. Concerning behavioural performance, patients found significantly less targets than healthy controls in both the upper and lower left quadrant. However, when targets were located in the lower left quadrant, patients needed more visual fixations (and therefore longer search time) to find them, suggesting a time-dependent vertical bias.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropsychologia.2011.04.010DOI Listing

Publication Analysis

Top Keywords

vertical bias
12
lower left
8
left quadrant
8
vertical
4
bias neglect
4
neglect question
4
question time?
4
time? neglect
4
neglect defined
4
defined failure
4

Similar Publications

The "oblique effect" refers to the reduced visual performance for stimuli presented at oblique orientations compared to those at cardinal orientations. In the cortex, neurons that respond to specific orientations are organized into orientation columns. This raises the question: Are the orientation signals in the iso-orientation columns associated with cardinal orientations the same as those in the iso-orientation columns associated with oblique orientations, and is this signal influenced by experience? To explore this, iso-orientation columns in visual area 18 were examined using optical imaging techniques.

View Article and Find Full Text PDF

Trench MOS Barrier Schottky (TMBS) rectifiers offer superior static and dynamic electrical characteristics when compared with planar Schottky rectifiers for a given active die size. The unique structure of TMBS devices allows for efficient manipulation of the electric field, enabling higher doping concentrations in the drift region and thus achieving a lower forward voltage drop (VF) and reduced leakage current (IR) while maintaining high breakdown voltage (BV). While the use of trenches to push electric fields away from the mesa surface is a widely employed concept for vertical power devices, a significant gap exists in the analytical modeling of this effect, with most prior studies relying heavily on computationally intensive numerical simulations.

View Article and Find Full Text PDF

A meta-analysis of the effects of plyometric training on muscle strength and power in martial arts athletes.

BMC Sports Sci Med Rehabil

January 2025

Department of Sports Studies, Faculty of Educational Studies, Universiti Putra Malaysia, Selangor, Malaysia.

Background: Plyometric training (PT) was explored as an effective intervention for enhancing muscle strength and power. However, its specific impact on these attributes in martial arts athletes had not been systematically evaluated. Therefore, the objective of this meta-analysis was to provide a quantitative assessment of the impact of PT on muscle strength and power in martial arts athletes.

View Article and Find Full Text PDF

Study of High Performance Nanoscale Channel Length Vertical Transistors with a Self-Aligned Blocking Layer.

ACS Appl Mater Interfaces

January 2025

Department of Electrical Engineering and Computer Science (EECS), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.

A transistor design employing all vertically stacked components has attracted considerable attention due to the simplicity of the fabrication process and the high conductivity easily realized by achieving nanolevel short channel lengths with two-dimensional current paths. However, fundamental issues, specifically the blocking of the gate electrical field to the semiconductive channel layer and high leakage current at the "off" state, have impeded this configuration in becoming a major transistor design. To address these issues, it has been proposed to introduce a blocking layer (BL) with embedded hole structures and source electrode with embedded hole structures, enhancing gate field penetration and carrier modulation.

View Article and Find Full Text PDF

Accurate statistical modeling of wind speed variability is crucial for assessing wind energy potential, particularly in regions with low wind speeds and significant calm hours. This study evaluates the Champernowne distribution as a novel model for wind speed analysis, comparing its performance with the two-parameter Weibull, three-parameter Weibull, and Rayleigh-Rice distributions. Wind speed data at 10 m hub height over three years (2021-2023) from Ben Guerir, Morocco, were analyzed using statistical metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Bias Error (MBE), Coefficient of Determination (R2), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!