A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intersectin 2 nucleotide exchange factor regulates Cdc42 activity during Xenopus early development. | LitMetric

Intersectin 2 nucleotide exchange factor regulates Cdc42 activity during Xenopus early development.

Biochem Biophys Res Commun

Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences-Ukraine, 150 Zabolotnogo Street, Kyiv, Ukraine.

Published: May 2011

Intersectin 2 (ITSN2) is an evolutionarily conserved scaffold protein involved in endocytic internalization, regulation of actin cytoskeleton and epithelial morphogenesis. Recent studies of different Itsn-deficient organisms revealed that this gene is essential for the functioning of the nervous system and for organism viability. Here we report investigations on a possible role of the ITSN2 long isoform in the early embryonic development of Xenopus laevis. In vertebrates, alternative splicing generates several alternatively spliced isoforms of ITSN2. To date the long splice variant of ITSN2 (ITSN2-L) has been reported only for mammals. We show that transcripts of ITSN2-L can be detected in Xenopus embryos from the first cleavage onwards. Overexpression of functional domains of ITSN2-L in embryos resulted in aberrant phenotypes. The strongest phenotype was produced by the C-terminal extension of ITSN2-L. Embryos displayed hyperpigmentation and gastrulation failure that were incompatible with survival. The C-terminus of ITSN2-L includes the DH-PH tandem, a nucleotide exchange factor for the small GTPase Cdc42 and the C2 domain. Further investigations revealed that the DH-PH tandem was responsible for the development of the phenotype affecting the actin cytoskeleton in embryos. Observed developmental defects depended on Cdc42. The effect of expression of the constitutively active GTPase strongly resembled that of the DH-PH tandem. The dominant negative Cdc42 partially rescued developmental defects induced by the expression of the DH-PH tandem. Thus, our data indicate that the ITSN2 exchange factor regulates the activity of Cdc42 during embryo development affecting actin cytoskeleton in Xenopus embryos.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2011.04.081DOI Listing

Publication Analysis

Top Keywords

dh-ph tandem
16
exchange factor
12
actin cytoskeleton
12
nucleotide exchange
8
factor regulates
8
itsn2 long
8
xenopus embryos
8
itsn2-l embryos
8
developmental defects
8
cdc42
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!