A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The kinetic mechanism for cytochrome P450 metabolism of type II binding compounds: evidence supporting direct reduction. | LitMetric

The kinetic mechanism for cytochrome P450 metabolism of type II binding compounds: evidence supporting direct reduction.

Arch Biochem Biophys

Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, WA 98119, United States.

Published: July 2011

The metabolic stability of a drug is an important property that should be optimized during drug design and development. Nitrogen incorporation is hypothesized to increase the stability by coordination of nitrogen to the heme iron of cytochrome P450, a binding mode that is referred to as type II binding. However, we noticed that the type II binding compound 1 has less metabolic stability at sub-saturating conditions than a closely related type I binding compound 3. Three kinetic models will be presented for type II binder metabolism; (1) Dead-end type II binding, (2) a rapid equilibrium between type I and II binding modes before reduction, and (3) a direct reduction of the type II coordinated heme. Data will be presented on reduction rates of iron, the off rates of substrate (using surface plasmon resonance) and the catalytic rate constants. These data argue against the dead-end, and rapid equilibrium models, leaving the direct reduction kinetic mechanism for metabolism of the type II binding compound 1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115501PMC
http://dx.doi.org/10.1016/j.abb.2011.04.008DOI Listing

Publication Analysis

Top Keywords

type binding
28
direct reduction
12
binding compound
12
type
9
kinetic mechanism
8
cytochrome p450
8
metabolism type
8
binding
8
metabolic stability
8
will presented
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!