Ultraviolet radiation is an important environmental constraint on the evolution of life. In addition to its harmful effects, ultraviolet radiation plays an important role in generating genetic polymorphisms and acting as a selective agent. Understanding how prokaryotes cope with high radiation can give insights on the evolution of life on Earth. Four representative filamentous bacteria from the family Cytophagaceae with different pigmentation were selected and exposed to different doses of UVC radiation (15-32,400Jm(-2)). The effect of UVC radiation on bacterial survival, growth and morphology were investigated. Results showed high survival in response to UVC for Rudanella lutea and Fibrisoma limi, whereas low survival was observed for Fibrella aestuarina and Spirosoma linguale. S. linguale showed slow growth recovery after ultraviolet exposure, R. lutea and F. limi showed intermediate growth recovery, while F. aestuarina had the fastest recovery among the four tested bacteria. In terms of survival, S. linguale was the most sensitive bacterium whereas R. lutea and F. limi were better at coping with UVC stress. The latter two resumed growth even after 2h exposure (∼10,800Jm(-2)). Additionally, the ability to form multicellular filaments after exposure was tested using two bacteria: one representative of the high (R. lutea) and one of the low (F. aestuarina) survival rates. The ability to elongate filaments due to cell division was preserved but modified. In R. lutea 10min exposure reduced the average filament length. The opposite was observed in F. aestuarina, where the 5 and 10min exposures increased the average filament length. R. lutea and F. limi are potential candidates for further research into survival and resistance to ultraviolet radiation stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2011.03.018 | DOI Listing |
RSC Adv
January 2025
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo 05508-000 São Paulo SP Brazil
New tetrakis Eu and Gd β-diketonate complexes containing benzimidazolium (Bzim) as the counterion were synthesized by the one-pot method. The Bzim[Eu(tta)]·HO complex was further incorporated into a poly(methyl methacrylate) matrix (PMMA) at 1, 5, and 10% (w/w), which revealed highly desirable photonic features. The Eu and Gd complexes were characterized by elemental and thermal analyses, in addition to ESI-MS spectrometry, FTIR, and Raman spectroscopy.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.
Sci Rep
January 2025
Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, 10032, USA.
Scientific bodies overseeing UV radiation protection recommend safety limits for exposure to ultraviolet radiation in the workplace based on published peer-reviewed data. To support this goal, a 3D model of the human cornea was used to assess the wavelength dependence of corneal damage induced by UV-C radiation. In the first set of experiments the models were exposed with or without simulated tears; at each wavelength (215-255Â nm) cells with DNA dimers and their distribution within the epithelium were measured.
View Article and Find Full Text PDFSci Rep
January 2025
NASA Ames Research Center, Planetary Systems Branch, Moffett Field, CA, USA.
As we assess the habitability of other worlds, we are limited by being able to only study terrestrial life adapted to terrestrial conditions. The environments found on Earth, though tremendously diverse, do not approach the multitude of potentially habitable environments beyond Earth, and so limited terrestrial adaptive capabilities tell us little about the fundamental biochemical boundaries of life. One approach to this problem is to use experimental laboratory evolution to adapt microbes to these novel environmental conditions.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Respiratory interventions including noninvasive ventilation, continuous positive airway pressure and high-flow nasal oxygen generated infectious aerosols may increase risk of airborne disease (SARS-CoV-2, influenza virus) transmission to healthcare workers. We developed and tested a prototype portable UV-C device to sterilize high flows of viral-contaminated air from a simulated patient source at airflow rates of up to 100Â l/m. Our device consisted of a central quartz tube surrounded 6 high-output UV-C lamps, within a larger cylinder allowing recirculation past the UV-C lamps a second time before exiting the device.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!