In Sweden, human cases of tularemia caused by Francisella tularensis holarctica are assumed to be transmitted by mosquitoes, but how mosquito vectors acquire and transmit the bacterium is not clear. To determine how transmission of this bacterium occurs, mosquito larvae were collected in an area where tularemia is endemic, brought to the laboratory, and reared to adults in their original pond water. Screening of adult mosquitoes by real-time PCR demonstrated F. tularensis lpnA sequences in 14 of the 48 mosquito pools tested; lpnA sequences were demonstrated in 6 of 9 identified mosquito species. Further analysis confirmed the presence of F. tularensis holarctica-specific 30-bp deletion region sequences (FtM19inDel) in water from breeding containers and in 3 mosquito species (Aedes sticticus, Ae. vexans, and Ae. punctor) known to take blood from humans. Our results suggest that the mosquitoes that transmit F. tularensis holarctica during tularemia outbreaks acquire the bacterium already as larvae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321753 | PMC |
http://dx.doi.org/10.3201/eid1705.100426 | DOI Listing |
Vet Med Sci
January 2025
Department of Chemistry, Environment and Feed Hygiene, SVA, Uppsala, Sweden.
Background: The zoonotic bacterium Francisella tularensis, the causative agent of tularaemia, can be transmitted to humans via multiple routes, including through contact with infected animals, contaminated water or arthropod vectors. Ticks have not previously been described as transmitting the disease in Sweden. Recently, Ixodid tick species have expanded their latitudinal and altitudinal range in Sweden to areas where the disease is endemic.
View Article and Find Full Text PDFMicroorganisms
November 2024
Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Énergie Atomique (CEA), Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
Epidemiol Mikrobiol Imunol
November 2024
We performed nanopore-based metagenomic screening on 885 ticks collected from 6 locations in Mongolia and divided the results into 68 samples: 23 individual samples and 45 pools of 2-12 tick samples each. We detected bacterial and parasitic pathogens Anaplasma ovis, Babesia microti, Coxiella burnetii, Borrelia miyamotoi, Francisella tularensis subsp. holarctica and novicida, Spiroplasma ixodetis, Theileria equi, and Rickettsia spp.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!