Assembly of bacterial ribosomes.

Annu Rev Biochem

Departments of Molecular Biology and Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.

Published: October 2011

AI Article Synopsis

Article Abstract

The assembly of ribosomes from a discrete set of components is a key aspect of the highly coordinated process of ribosome biogenesis. In this review, we present a brief history of the early work on ribosome assembly in Escherichia coli, including a description of in vivo and in vitro intermediates. The assembly process is believed to progress through an alternating series of RNA conformational changes and protein-binding events; we explore the effects of ribosomal proteins in driving these events. Ribosome assembly in vivo proceeds much faster than in vitro, and we outline the contributions of several of the assembly cofactors involved, including Era, RbfA, RimJ, RimM, RimP, and RsgA, which associate with the 30S subunit, and CsdA, DbpA, Der, and SrmB, which associate with the 50S subunit.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-biochem-062608-160432DOI Listing

Publication Analysis

Top Keywords

ribosome assembly
8
assembly
6
assembly bacterial
4
bacterial ribosomes
4
ribosomes assembly
4
assembly ribosomes
4
ribosomes discrete
4
discrete set
4
set components
4
components key
4

Similar Publications

2D template matching (2DTM) can be used to detect molecules and their assemblies in cellular cryo-EM images with high positional and orientational accuracy. While 2DTM successfully detects spherical targets such as large ribosomal subunits, challenges remain in detecting smaller and more aspherical targets in various environments. In this work, a novel 2DTM metric, referred to as the 2DTM p-value, is developed to extend the 2DTM framework to more complex applications.

View Article and Find Full Text PDF

Draft genome dataset of strain R-35 isolated from tidal pool sediments.

Data Brief

February 2025

Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, Cape Town, 7530, South Africa.

The marine isolate, strain R-35, was isolated from marine sediments collected from the Glencairn Tidal Pool, Table Mountain National Park, Cape Town, South Africa. The genomic DNA was sequenced using the Ion Torrent GeneStudio™ S5 platform, and the assembly was performed using the SPAdes assembler on the Centre for High Performance Computing (CHPC) Lengau Cluster located at the CSIR, Rosebank, South Africa. The draft genome assembly consisted of 722 contigs totaling 7,625,174 base pairs and a G+C% content of 72.

View Article and Find Full Text PDF

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Molecular chaperones are essential throughout a protein's life and act already during protein synthesis. Bacteria and chloroplasts of plant cells share the ribosome-associated chaperone trigger factor (Tig1 in plastids), facilitating maturation of emerging nascent polypeptides. While typical trigger factor chaperones employ three domains for their task, the here described truncated form, Tig2, contains just the ribosome binding domain.

View Article and Find Full Text PDF

Conformational switches in human RNA binding proteins involved in neurodegeneration.

Biochim Biophys Acta Gen Subj

January 2025

Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. Electronic address:

Conformational switching in RNA binding proteins (RBPs) are crucial for regulation of RNA processing and transport. Dysregulation or mutations in RBPs and broad RNA processing abnormalities are related to many human diseases including neurodegenerative disorders. Here, we review the role of protein-RNA conformational switches in RBP-RNA complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!