Hematopoietic processes, especially megakaryocytopoiesis and thrombopoiesis, are highly sensitive to high-linear energy transfer (LET) radiations such as heavy-ion beams that have greater biological effects than low-LET radiation. This study examined the terminal maturation of megakaryocytes and platelet production derived from hematopoietic stem cells irradiated with heavy-ion beams. CD34(+) cells derived from human placental/umbilical cord blood were exposed to monoenergetic carbon-ion beams (LET  =  50 keV/µm) and then cultured in a serum-free medium supplemented with thrombopoietin and interleukin-3. There was no significant difference in megakaryocyte-specific markers between nonirradiated control and irradiated cells. Expression of Tie-2, a receptor that acts in early hematopoiesis, showed a significant 1.31-fold increase after 2 Gy irradiation compared to control cells on day 7. There was a significant increase in Tie-2 mRNA expression. In addition, the expression of other mRNAs, such as PECAM1, SELP and CD44, was also significantly increased in cells irradiated with heavy-ion beams. However, the adherent function of platelets derived from the irradiated cells showed no difference from that in the controls. These results clarify that the functions of megakaryocytopoiesis and thrombopoiesis derived from hematopoietic stem/progenitor cells irradiated with heavy-ion beams are similar to those in the unirradiated cells, although heavy-ion beams affect the expression of genes associated with cellular adhesion.

Download full-text PDF

Source
http://dx.doi.org/10.1667/rr2392.1DOI Listing

Publication Analysis

Top Keywords

heavy-ion beams
24
cells irradiated
16
irradiated heavy-ion
16
cells
9
terminal maturation
8
maturation megakaryocytes
8
megakaryocytes platelet
8
platelet production
8
hematopoietic stem
8
stem cells
8

Similar Publications

Ion beam mutagenesis is an advanced technique capable of inducing substantial changes in plants, resulting in noticeable alterations in their growth. However, the precise molecular mechanisms underlying the effects of radiation on soybeans remain unclear. This study investigates the impact of ionizing radiation on soybean development through a comprehensive approach that integrates transcriptomics and metabolomics.

View Article and Find Full Text PDF

Radioresistant tumours remain complex to manage with current radiotherapy (RT) techniques. Heavy ion beams were proposed for their treatment given their advantageous radiobiological properties. However, previous studies with patients resulted in serious adverse effects in the surrounding healthy tissues.

View Article and Find Full Text PDF

The number of patients requiring breast reconstruction with artificial implants has been increasing, and so is the use of carbon-ion radiotherapy (CIRT). Consequently, a growing number of patients with artificial breast implants are expected to undergo CIRT. Because artificial breasts are composed of a silicone polymer gel with a silicon-oxygen backbone, which differs significantly from human tissues, the stopping power ratio for carbon beams cannot be accurately converted from CT values using standard CT-to-stopping power ratio tables (CT-SP tables).

View Article and Find Full Text PDF

Commissioning of a commercial treatment planning system for scanned carbon-ion radiotherapy.

J Appl Clin Med Phys

November 2024

Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.

Purpose: To commission the RayStation (RS) TPS (treatment planning system) for scanned CIRT (carbon-ion radiotherapy) utilizing pencil beam algorithms (PBv4.2).

Methods: The beam model commissioning entailed employing 1D single beams and 2D monoenergetic fields to validate spot profiles with films, assess beam range using Peakfinder measurements, and evaluate fragment spectra through dose-averaged linear energy transfer (LETd) calculations.

View Article and Find Full Text PDF

Advances in Targeted Microbeam Irradiation Methods for Live .

Biology (Basel)

October 2024

Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science (TIAQS), National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki 370-1292, Gunma, Japan.

Article Synopsis
  • Charged-particle microbeam irradiation devices allow for targeted irradiation of individual cells and tissues using heavy-ion or proton beams, with applications seen in Japan, the United States, China, and France.
  • This technology is particularly useful for studying the effects of irradiation on mammalian cancer cells, focusing on bystander effects.
  • The paper reviews advancements in microbeam biology, particularly since the first individual-level microbeam irradiation of nematodes in 2006, while addressing unique challenges related to immobilizing subjects for experiments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!