We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi@Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi@Elettra free electron laser in 2011.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3582155DOI Listing

Publication Analysis

Top Keywords

fermi@elettra free
12
free electron
12
electron laser
12
experimental station
8
diproi beamline
8
beamline fermi@elettra
8
multipurpose modular
4
modular experimental
4
station diproi
4
laser compact
4

Similar Publications

We systematically study the fluence dependence of the resonant scattering cross-section from magnetic domains in Co/Pd-based multilayers. Samples are probed with single extreme ultraviolet (XUV) pulses of femtosecond duration tuned to the Co M_{3,2} absorption resonances using the FERMI@Elettra free-electron laser. We report quantitative data over 3 orders of magnitude in fluence, covering 16  mJ/cm^{2}/pulse to 10 000  mJ/cm^{2}/pulse with pulse lengths of 70 fs and 120 fs.

View Article and Find Full Text PDF

The Diffraction and Projection Imaging (DiProI) beamline at FERMI, the Elettra free-electron laser (FEL), hosts a multi-purpose station that has been opened to users since the end of 2012. This paper describes the core capabilities of the station, designed to make use of the unique features of the FERMI-FEL for performing a wide range of static and dynamic scattering experiments. The various schemes for time-resolved experiments, employing both soft X-ray FEL and seed laser IR radiation are presented by using selected recent results.

View Article and Find Full Text PDF

In this paper, the authors report on La/B(4)C multilayer mirrors designed for an incidence angle of 45° with both maximum reflectivity at a wavelength of 6.7 nm and reflectivity suppression at a wavelength of 20.1 nm.

View Article and Find Full Text PDF

The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field.

View Article and Find Full Text PDF

We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!