The laser wakefield acceleration electron beams can essentially deviate from the axis of the system, which distinguishes them greatly from beams of conventional accelerators. In case of energy measurements by means of a permanent-magnet electron spectrometer, the deviation angle can affect accuracy, especially for high energies. A two-screen single-shot electron spectrometer that correctly allows for variations of the angle of entry is considered. The spectrometer design enables enhancing accuracy of measuring narrow electron beams significantly as compared to a one-screen spectrometer with analogous magnetic field, size, and angular acceptance.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3585862DOI Listing

Publication Analysis

Top Keywords

electron spectrometer
12
electron beams
12
two-screen single-shot
8
single-shot electron
8
laser wakefield
8
electron
6
spectrometer
5
spectrometer laser
4
wakefield accelerated
4
accelerated electron
4

Similar Publications

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

In this study, the zirconium-based metal organic framework (Zr-MOF) was applied as the adsorbent for phosphorus (P) pollution in water. Then the phosphate-adsorbed metal organic frameworks (MOFs) were used as a recycled raw material and calcined to obtain P-doped MOFs-derived carbon material (ZrP@Zr-BTC). Next, the ZrP@Zr-BTC was used for peroxymonosulfate (PMS) activation for the ceftriaxone sodium degradation.

View Article and Find Full Text PDF

Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS.

View Article and Find Full Text PDF

Titanium potassium oxalate had been mixed into the electrolyte to improve the anti-corrosion property of the micro arc oxidation coating on the surface of the aluminium alloy. The surface and cross-section of the coating at different titanium potassium oxalate concentrations had been observed by scanning electron microscopy, showing that when the titanium potassium oxalate concentration was 10 g/L, the coating compactness was better. Additionally, the element content of the coating had been studied by the energy dispersive spectrometer, and results proved that the coating consisted of Al, O, Ti, Si, and P.

View Article and Find Full Text PDF

Molybdate, an oxidized form of molybdenum, facilitates molybdenum to be taken into cell, and thus to be included as a cofactor in the structure of enzymes necessary to ensure homeostasis. Although this compound provides the catalysis and electron transport of many biochemical reactions, it causes serious health problems in animals at high concentrations. For this reason, its recovery of water resources is one of the main subjects of scientific studies called bioremediaiton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!