Arc discharge single-walled carbon nanotube (SWCNT) soot was treated under different experimental conditions including gas- and liquid-phase oxidation, heat treatment in an inert gas, and hydrogen gasification. Afterward, the samples were dispersed in a surfactant and centrifuged at a moderately high speed. Near-infrared spectra of all the dispersions were compared with that of raw SWCNT soot. The relative intensity of SWCNT characteristic spectral bands strongly increased for air-oxidized samples after centrifugation, while it did not substantially change for samples oxidized with nitric acid or reduced with hydrogen. The relative SWCNT spectral intensity was associated to the sample purity through the so-called purity index, which was calculated from the S(22) band transition of semiconducting SWCNTs. Air-oxidized samples experienced a 7-fold increase in the purity index during centrifugation, while it increased by only 2-3 times for nonoxidized samples. Air oxidation specifically improves the preferential stability of SWCNTs over carbonaceous impurities in the dispersions, leading to the highest purity index values reported so far.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la200730k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!