Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genetic studies have elegantly characterized the innate immune response in Drosophila melanogaster. However, these studies have a limited ability to reveal the biochemical mechanisms underlying the innate immune response. To investigate the biochemical basis of how insects recognize invading microbes and how these recognition signals activate the innate immune response, it is necessary to use insects, from which larger amounts of hemolymph can be extracted. Using the larvae from two species of beetle, Tenebrio molitor and Holotrichia diomphalia, we elucidated the mechanisms underlying pathogenic microbe recognition. In addition, we studied the mechanism of host defense molecule amplification. In particular, we identified several pattern recognition proteins, serine proteases, serpins and antimicrobial peptides and examined how these molecules affect innate immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4419-8059-5_9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!