Adoptive transfer via immune T-lymphocytes of effective anti-tumor immunity against a malignant rat glioma in the brain.

Int J Oncol

GERMAN CANC RES CTR,DIV CELLULAR IMMUNOL,D-69120 HEIDELBERG,GERMANY. CLEMENHOSP MUNSTER,DEPT NEUROSURG,MUNSTER,GERMANY. UNIV BONN,MED CTR,INST ZOOL,DEPT IMMUNOBIOL,D-5300 BONN,GERMANY. UNIV BONN,MED CTR,DEPT NEUROPATHOL,D-5300 BONN,GERMANY.

Published: August 1997

The aim of the present study was to develop an animal model to test the therapeutic potential of purified CD4 and CD8 T-lymphocytes against the intracerebrally implanted rat glioma cell line TZ363. Peripheral immunization of donor rats was performed by subcutaneous injection of viable TZ363 tumor cells while control animals received buffer injection. Donor splenic T-lymphocytes were prepared 14 days later and enriched by immune-bead MACS sorting. FACScan analysis revealed that of the pooled and sorted cells 91% of the tumor immune group were T-lympocytes and from the control animals 96%. The purified immune CD4/CD8 T-lymphocytes (1.2 to 5x10(7) cells) were injected intraperitoneally into 12 adult rats (three groups; each four animals), which were challenged five days later by an intracerebral injection of 5x10(4) TZ363 glioma cells. Four rats received 1.4x10(7) T-cells from control animals. While 3 of 4 animals developed a brain tumor and died in the control group, all animals, which received 5x10(7) immune T-cells survived the intracerebral tumor challenge. In the other groups survival rate depended on the amount of T-cells given. All other rats were sacrificed 32 days after intracerebral grafting. No tumor was found in these animals. Our data demonstrate that an anti-tumor T-cell response can be raised against the malignant rat glioma TZ363 and that purified CD4 and CD8 T-lymphocytes from tumor immunized donors can transfer protective immunity across the blood-brain barrier into recipient rats which are tumor challenged intracerebrally.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.11.2.249DOI Listing

Publication Analysis

Top Keywords

rat glioma
12
control animals
12
malignant rat
8
purified cd4
8
cd4 cd8
8
cd8 t-lymphocytes
8
animals received
8
days intracerebral
8
tumor
7
animals
7

Similar Publications

Limited advancements in managing malignant brain tumors have resulted in poor prognoses for glioblastoma (GBM) patients. Standard treatment involves surgery, radiotherapy, and chemotherapy, which lack specificity and damage healthy brain tissue. Boron-containing compounds, such as boric acid (BA), exhibit diverse biological effects, including anticancer properties.

View Article and Find Full Text PDF

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

Significance: Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans.

Aim: We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions.

View Article and Find Full Text PDF

This study aimed to investigate β-Caryophyllene (BCA) pharmacokinetics as well as the potential antitumor activity and mechanism of action of BCA and eugenol (EU), alone or in combination, in U87 glioblastoma (GB) cells. The BCA pharmacokinetic was studied by evaluating its concentration profiles in rat blood and cerebrospinal fluid after oral and intravenous administration. EU and BCA antitumor mechanisms were assessed by comparing their effects in U87 GB cells and non-tumoral HMC3 cells.

View Article and Find Full Text PDF

Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!