Background: Virtual (computational) screening is an increasingly important tool for drug discovery. AutoDock is a popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions. AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4).
Results: Using MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output (I/O) traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on two multiprocessor computers.
Conclusions: Using MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall screening time. Multithreading of AutoDock's Lamarkian Genetic Algorithm with OpenMP increases the speed of execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular docking workloads and allows the user to optimize the degree of system-level (MPI) and node-level (OpenMP) parallelization to best fit both workloads and computational resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098179 | PMC |
http://dx.doi.org/10.1186/1758-2946-3-12 | DOI Listing |
ACS Cent Sci
November 2024
Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China.
High-throughput virtual screening (HTVS) has emerged as a pivotal strategy for identifying high-affinity peptides targeting functional proteins, which are crucial for diagnostic and therapeutic applications. In the HTVS of peptides, expanding the library capacity to enhance peptide sequence diversity, thereby screening out excellent affinity peptide candidates, remains a significant challenge. This study presents a design strategy that leverages directed mutation driven HTVS to evolve vast virtual libraries and screen peptides with ultrahigh affinities for various target proteins.
View Article and Find Full Text PDFJ Chem Inf Model
November 2024
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Molecular docking is an essential tool in structure-based drug discovery, widely utilized to model ligand-protein interactions and enrich potential hits. Among the different docking strategies, semiflexible docking (rigid-receptor and flexible-ligand model) is the most popular, benefiting from its balance of docking accuracy and speed. However, this approach ignores the conformational changes of proteins and hence demands suitable protein conformations as input.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
September 2024
AutoDock Vina and its derivatives have established themselves as a prevailing pipeline for virtual screening in contemporary drug discovery. Our Vina-GPU method leverages the parallel computing power of GPUs to accelerate AutoDock Vina, and Vina-GPU 2.0 further enhances the speed of AutoDock Vina and its derivatives.
View Article and Find Full Text PDFPLoS One
May 2024
PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
Background: In the search for better anticancer drugs, computer-aided drug design (CADD) techniques play an indispensable role in facilitating the lengthy and costly drug discovery process especially when natural products are involved. Anthraquinone is one of the most widely-recognized natural products with anticancer properties. This review aimed to systematically assess and synthesize evidence on the utilization of CADD techniques centered on the anthraquinone scaffold for cancer treatment.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
April 2024
AutoDock Vina (Vina) stands out among numerous molecular docking tools due to its precision and comparatively high speed, playing a key role in the drug discovery process. Hardware acceleration of Vina on FPGA platforms offers a high energy-efficiency approach to speed up the docking process. However, previous FPGA-based Vina accelerators exhibit several shortcomings: 1) Simple uniform quantization results in inevitable accuracy drop; 2) Due to Vina's complex computing process, the evaluation and optimization phase for hardware design becomes extended; 3) The iterative computations in Vina constrain the potential for further parallelization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!