Background: Coral reefs are disturbed on a global scale by environmental changes including rising sea surface temperatures and ocean acidification. Little is known about how corals respond or adapt to these environmental changes especially at the molecular level. This is mostly because of the paucity of genome-wide studies on corals and the application of systems approaches that incorporate the latter. Like in any other organism, the response of corals to stress is tightly controlled by the coordinated interplay of many transcription factors.
Results: Here, we develop and apply a new system-wide approach in order to infer combinatorial transcription factor networks of the reef-building coral Acropora millepora. By integrating sequencing-derived transcriptome measurements, a network of physically interacting transcription factors, and phylogenetic network footprinting we were able to infer such a network. Analysis of the network across a phylogenetically broad sample of five species, including human, reveals that despite the apparent simplicity of corals, their transcription factors repertoire and interaction networks seem to be largely conserved. In addition, we were able to identify interactions among transcription factors that appear to be species-specific lending strength to the novel concept of "Taxonomically Restricted Interactions".
Conclusions: This study provides the first look at transcription factor networks in corals. We identified a transcription factor repertoire encoded by the coral genome and found consistencies of the domain architectures of transcription factors and conserved regulatory subnetworks across eumetazoan species, providing insight into how regulatory networks have evolved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096595 | PMC |
http://dx.doi.org/10.1186/1752-0509-5-58 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
Seed color is a critical quality trait in numerous plant species. In oilseed crops, including rapeseed and mustard, yellow seeds are distinguished by their significantly higher oil content and faster germination rates compared to black or brown counterparts. Despite the agronomic significance of the yellow seeds being a prime breeding target, the mechanisms underlying elevated oil content remain obscure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.
Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.
View Article and Find Full Text PDFScience
January 2025
Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Cochlear inner hair cells (IHCs) and outer hair cells (OHCs) require different transcription factors for their cell fate stabilization and survival, suggesting separate mechanisms are involved. Here, we found that the transcription factor Casz1 was crucial for early IHC fate consolidation and for OHC survival during mouse development. Loss of Casz1 resulted in transdifferentiation of IHCs into OHCs, without affecting OHC production.
View Article and Find Full Text PDFPLoS Genet
January 2025
MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
The genetic circuitry that encodes the developmental programme of mammals is regulated by transcription factors and chromatin modifiers. During early gestation, the three embryonic germ layers are established in a process termed gastrulation. The impact of deleterious mutations in chromatin modifiers such as the polycomb proteins manifests during gastrulation, leading to early developmental failure and lethality in mouse models.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
Hepatitis B virus (HBV) X protein (HBx) is a key factor for regulating viral transcription and replication. We recently characterized homeobox protein MSX-1 (MSX1) as a host restriction factor that inhibits HBV gene expression and genome replication by directly binding to HBV enhancer II/core promoter (EnII/Cp) and suppressing its promoter and enhancer activities. Notably, HBx expression was observed to be repressed more drastically by MSX1 compared to other viral antigens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!