Amelioration of doxorubicin-induced cardiotoxicity by deferiprone in rats.

Can J Physiol Pharmacol

Department of Pharmacology and Toxicology, Mansoura University, Egypt.

Published: April 2011

The therapeutic usefulness of doxorubicin (Dox), an anthracycline antibiotic used as an anticancer agent, is limited by its cardiotoxicity. Dox-induced cardiotoxicity is mainly attributed to accumulation of reactive oxygen species and interaction of Dox with cellular iron metabolism. The present study investigated the effects of the iron chelator deferiprone (Def) against Dox-induced cardiotoxicity in rats. Dox (15 mg/kg) was injected intraperitoneally as a single dose, and Def (10 mg/kg) was administered orally for 10 days. Dox showed cardiotoxicity as evidenced by increased heart rate, elevated ST segment, prolonged QTc interval, and increased T wave amplitude. In addition, Dox enhanced aconitine cardiotoxicity by decreasing its dose, producing ventricular tachycardia. Administration of Def significantly attenuated Dox-induced electrocardiographic changes. Cardiotoxicity of Dox was confirmed biochemically by a significant elevation in serum creatine kinase-MB and lactate dehydrogenase activities as well as by myocardial malondialdehyde and reduced glutathione contents. Moreover, Dox caused a significant decrease in myocardial superoxide dismutase activity. Administration of Def significantly attenuated the biochemical changes. These results suggest that Def might be a potential cardioprotective agent against Dox-induced cardiotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1139/y11-020DOI Listing

Publication Analysis

Top Keywords

dox-induced cardiotoxicity
12
cardiotoxicity
8
administration def
8
def attenuated
8
dox
7
def
5
amelioration doxorubicin-induced
4
doxorubicin-induced cardiotoxicity
4
cardiotoxicity deferiprone
4
deferiprone rats
4

Similar Publications

Doxorubicin or Epirubicin Versus Liposomal Doxorubicin Therapy-Differences in Cardiotoxicity.

Cardiovasc Toxicol

January 2025

Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.

Doxorubicin (DOX) is an important drug used in the treatment of many malignancies. Unfortunately DOX causes various side effects, with cardiotoxicity being the most characteristic. Risk factors for DOX induced cardiotoxicity (DIC) include cumulative dose of DOX, preexisting cardiovascular diseases, dyslipidemia, diabetes, smoking, along with the use of other cardiotoxic agents.

View Article and Find Full Text PDF

Shenmai Injection Reduces Cardiomyocyte Apoptosis Induced by Doxorubicin through miR-30a/Bcl-2.

Chin J Integr Med

January 2025

Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.

Objective: To explore the molecular mechanism of Shenmai Injection (SMI) against doxorubicin (DOX) induced cardiomyocyte apoptosis.

Methods: A total of 40 specific pathogen-free (SPF) male Sprague Dawley (SD) male rats were divided into 5 groups based on the random number table, including the control group, the model group, miR-30a agomir group, SMI low-dose (SMI-L) group, and SMI high-dose (SMI-H) group, with 8 rats in each group. Except for the control group, the rats were injected weekly with DOX (2 mg/kg) in the tail vein for 4 weeks to induce myocardial injury, and were given different regimens of continuous intervention for 2 weeks.

View Article and Find Full Text PDF

Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity.

Cardiovasc Drugs Ther

January 2025

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).

Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.

View Article and Find Full Text PDF

Metallothionein rescues doxorubicin cardiomyopathy via mitigation of cuproptosis.

Life Sci

January 2025

Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong 226001, China. Electronic address:

Doxorubicin (DOX), a chemotherapeutic agent utilized in the management of cancer, provokes cardiotoxicity although effective remedy is lacking. Given that DOX provokes oxidative stress and cell death in cardiomyocytes, this study evaluated the possible involvement of cuproptosis, a newly identified form of cell death, in DOX-instigated cardiac remodeling and contractile dysfunction, alongside the impact of the heavy metal scavenger metallothionein (MT) on DOX cardiomyopathy. Cardiac-specific MT transgenic and wild-type (WT) mice were treated with DOX (5 mg/kg/wk.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!