Platelets from patients with type 2 diabetes show abnormalities in intracellular Ca(2+) homeostasis that are involved in platelet hyperaggregability and the development of thrombotic complications. Different Ca(2+) transport mechanisms have been reported to be altered in platelets from patients with type 2 diabetes, including the sarcoendoplasmic and plasma membrane Ca(2+)-ATPases, plasma membrane Ca(2+) channels, or the Na(+)/Ca(2+) exchanger. Here, we have investigated whether passive Ca(2+) leak from the stores is altered in platelets from patients with type 2 diabetes. Resting cytosolic Ca(2+) concentration ([Ca(2+)](i)) was found to be greater in platelets from patients with type 2 diabetes than in healthy controls. In a Ca(2+)-free medium, platelet stimulation with thrombin or ADP evokes a rapid and transient increase in [Ca(2+)](i) that was found to be greater in patients with diabetes than in healthy controls. Sequential or combined inhibition of Ca(2+) extrusion and Ca(2+) sequestration into the stores reduced the difference between the responses to agonists in patients with diabetes and healthy controls, although agonist-induced Ca(2+) efflux from the stores was still significantly greater in patients with diabetes. Ca(2+) leak from the dense tubular system or the acidic stores, induced by a low concentration of thapsigargin or 2,5-di-(t-butyl)-1,4-hydroquinone (TBHQ), respectively, was clearly greater in patients with diabetes than in controls, and was not significantly modified by treatment with 2-APB. These findings indicate that passive Ca(2+) leakage rate from the intracellular stores in platelets is significantly enhanced in patients with type 2 diabetes mellitus and this might explain the increased resting [Ca(2+)](i).

Download full-text PDF

Source
http://dx.doi.org/10.3109/09537104.2010.528813DOI Listing

Publication Analysis

Top Keywords

patients type
24
type diabetes
24
platelets patients
20
patients diabetes
16
altered platelets
12
diabetes healthy
12
healthy controls
12
greater patients
12
ca2+
11
patients
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!