The present study was based on assessments of the anti-parasitic activities of the hematophagous (blood feeding) larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector, Culex quinquefasciatus, Say (Diptera: Culicidae), and the larvae of cattle tick Rhipicephalus (Boophilus) microplus, Canestrini (Acari: Ixodidae). The metallic copper nanoparticles (Cu NPs) synthesized by polyol process from copper acetate as precursor and Tween 80 were used as both the medium and the stabilizing reagent. The efficacy of synthesized Cu NPs was tested against the larvae of blood-sucking parasites. UV-vis spectra characterization was performed, and peak was observed at 575 nm, which is the characteristic to the surface plasmon bond of Cu NPs. The strong surface plasmon absorption band observed at 575 nm may be due to the formation of non-oxidized Cu NPs. X-ray diffraction (XRD) spectral data showed concentric rings corresponding to the 26.79 (111), 34.52 (200), and 70.40 (220) reflections. XRD spectrum of the copper nanoparticles exhibited 2θ values corresponding to the copper nanocrystal. No peaks of impurities are observed in XRD data. The scanning electron micrograph (SEM) showed structures of irregular polygonal, cylindrical shape, and the size range was found to be 35-80 nm. The size of the Cu NPs was measured by atomic force microscope (AFM) in non-contact mode. For imaging by AFM, the sample was suspended in acetone and spins coated on a silicon wafer. The line profile image was drawn by the XEI software and the horizontal line at 6 μm on a 2D AFM image. Research has demonstrated that metallic nanoparticles produce toxicity in aquatic organisms that is due largely to effects of particulates as opposed to release of dissolved ions. Copper acetate solution tested against the parasite larvae exposed to varying concentrations and the larval mortality was observed for 24 h. The larval percent mortality observed in synthesized Cu NPs were 36, 49, 75, 93,100; 32, 53, 63, 73, and 100 and 36, 47, 69, 88, 100 at 0.5, 1.0, 2.0, 4.0, and 8.0 mg/L against A. subpictus, C. quinquefasciatus and R. microplus, respectively. The larval percent mortality shown in copper acetate solution were 16, 45, 57, 66 and 100, 37, 58, 83, 87, and 100 and 41, 59, 79, 100, and 100 at 10, 20, 30, 40, and 50 mg/L against A. subpictus, C. quinquefasciatus, and R. microplus, respectively. The maximum efficacy was observed in Cu NPs and copper acetate solution against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus with LC(50) and r (2) values of 0.95 and 23.47, 1.01 and 15.24, and 1.06 and 14.14 mg/L with r (2) = 0.766; 0.957 and 0.908; 0.946; and 0.816 and 0.945, respectively. The control (distilled water) showed nil mortality in the concurrent assay. The chi-square value was significant at p ≤ 0.05 level. This is the first report on anti-parasitic activity of the synthesized Cu NPs and copper acetate solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00436-011-2387-3 | DOI Listing |
Environ Res
January 2025
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, P. R. China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun 130021, P. R. China. Electronic address:
Phenolic compounds are prevalent in domestic and industrial effluents, leading a serious environmental hazard. Paper-based analysis device mediated by nanozymes has shown great potential in portable visual determination of phenolic compounds in the environment. In this work, we used nicotinic acid derivatives such as pyridine-2,3-dicarboxylic acid, 2-methylnicotinic acid and 2-aminonicotinic acid by coordinating copper (II) acetate monohydrate coordination to obtain Cu2-COOHNA, Cu2-CHNA, Cu2-ANA nanozymes with laccase-activity.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.
View Article and Find Full Text PDFMolecules
December 2024
Laboratory of Electrochemistry, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland.
Brochantite was precipitated using stoichiometric amounts of CuSO and NaOH and characterized by scanning electron microscopy, specific surface area, thermogravimetric analysis, and zeta potential. Brochantite can be converted into paratacamite, basic copper bromide, and copper phthalate by shaking the powder with solutions containing excess corresponding anions. By contrast, attempts to convert brochantite into basic iodide, acetate, nitrate, or rhodanide in a similar way failed, that is, the powder after shaking with solutions containing excess corresponding anions still showed the powder X-ray diffraction pattern of brochantite.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
This study introduces a new nano catalyst tailored for the eco-friendly synthesis of pyrido[2,3-]pyrimidine via a three-component one-pot reaction involving benzaldehydes, malononitrile, and uracil. To achieve this objective, we anchored copper acetate onto the surface of layered double hydroxides modified with 1,3‑benzenedisulfonyl amide (BDSA) (LDH@PTRMS@BDSA@Cu(NO)), which exhibited remarkable activity and selectivity. The main benefits of this method include high product yield, swift reaction times, straightforward purification, catalyst reusability, and the employment of a mild reaction process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!