The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079742 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018970 | PLOS |
Plants (Basel)
December 2024
Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
The focus on increasing wheat ( L.) grain yield at the expense of grain quality and nutrient accumulation can lead to shortages in macronutrient minerals, which are dangerous for human health. This is important, especially in nations where bread wheat is used in most daily dietary regimens.
View Article and Find Full Text PDFFront Microbiol
December 2024
Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
Soda lakes are unique double-extreme habitats characterized by high salinity and soluble carbonate alkalinity, yet harboring rich prokaryotic life. Despite intensive microbiology studies, little is known about the identity of the soda lake hydrolytic bacteria responsible for the primary degradation of the biomass organic matter, in particular cellulose. In this study, aerobic and anaerobic enrichment cultures with three forms of native insoluble cellulose inoculated with sediments from five soda lakes in south-western Siberia resulted in the isolation of four cellulotrophic haloalkaliphilic bacteria and their four saccharolytic satellites.
View Article and Find Full Text PDFSci Rep
December 2024
Nanyang Vocational College, Nanyang, 473000, China.
In the course of pipe jacking construction, the carrying-soil effect frequently arises, influenced by factors such as excavation unloading, ongoing disturbance from successive pipe sections, and the progressive accumulation of soil adhesion. The pipe jacking slurry serves as a critical agent for friction reduction and strata support, essential for the secure advancement of the construction process. This study introduces the Microbial-Induced Calcium Carbonate Precipitation (MICP) technology into the realm of pipe jacking slurry, aiming to enhance its friction-reduction capabilities and the stability of the soil enveloping the pipe.
View Article and Find Full Text PDFCommun Chem
November 2024
Aspiring Materials, Christchurch, New Zealand.
Sci Rep
September 2024
Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, Alexandria, Egypt.
Halophilic archaea are a unique group of microorganisms that thrive in high-salt environments, exhibiting remarkable adaptations to survive extreme conditions. Archaeological wood and El-Hamra Lake serve as a substrate for a diverse range of microorganisms, including archaea, although the exact role of archaea in archaeological wood biodeterioration remains unclear. The morphological and chemical characterizations of archaeological wood were evaluated using FTIR, SEM, and EDX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!