Alcohol abuse, endoplasmic reticulum stress and pancreatitis.

Dig Dis

Southern California Research Center for Alcoholic Liver Pancreatic Diseases and Cirrhosis, UCLA Center for Excellence in Pancreatic Diseases, University of California, and VA Greater Los Angeles Health Care System, Los Angeles, Calif., USA.

Published: August 2011

Alcohol abuse is a common cause of both acute and chronic pancreatitis. There is a wide spectrum of pancreatic manifestations in heavy drinkers from no apparent disease in most individuals to acute inflammatory and necrotizing pancreatitis in a minority of individuals with some progressing to chronic pancreatitis characterized by replacement of the gland by fibrosis and chronic inflammation. Both smoking and African-American ethnicity are associated with increased risk of alcoholic pancreatitis. In this review we describe how our recent studies demonstrate that ethanol feeding in rodents causes oxidative stress in the endoplasmic reticulum (ER) of the digestive enzyme synthesizing acinar cell of the exocrine pancreas. This ER stress is attenuated by a robust unfolded protein response (UPR) involving X-box binding protein-1 (XBP1) in the acinar cell. When the UPR activation is prevented by genetic reduction in XBP1, ethanol feeding causes significant pathological responses in the pancreas. These results suggest that the reason most individuals who drink alcohol heavily do not get significant pancreatic disease is because the pancreas mounts an adaptive UPR to attenuate the ER stress that ethanol causes. We hypothesize that disease in the pancreas results when the UPR is insufficiently robust to alleviate the ER stress caused by alcohol abuse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211518PMC
http://dx.doi.org/10.1159/000327212DOI Listing

Publication Analysis

Top Keywords

alcohol abuse
12
endoplasmic reticulum
8
chronic pancreatitis
8
ethanol feeding
8
acinar cell
8
disease pancreas
8
stress
5
pancreatitis
5
alcohol
4
abuse endoplasmic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!