Introduction: Bipolar vessel-sealing devices (VSDs) have advantages in urological surgeries (less hemorrhage, shorter operating time). However, these instruments can cause thermal injuries, which can result in neural damage and necrosis. The objectives of this study were to establish a reproducible in vitro model for standardized assessment of electrosurgical devices and to evaluate whether optimized placement of surgical instruments can reduce the thermal spread.
Methods: We evaluated thermal spread of two VSDs in vitro using thin bovine muscle strips. Thermal injury was measured using an infrared camera, temperature probes and histology. The recordings were made with the VSD alone and with a rectangular clamp next to the VSD.
Results: Both instruments showed a significant temperature spread of 2.5 mm lateral to the VSD. The placement of a metal clamp next to the VSD significantly reduced the temperature spread. Histological examinations were able to underline these findings.
Conclusions: In this study we describe a straightforward clinically relevant in vitro model for the evaluation of future electrosurgical instruments. We demonstrated that the thermal spread of VSD could be further reduced by optimized placement of an additional surgical instrument. Our results could help surgeons protect sensitive structures like nerves in the vicinity of the VSD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000324253 | DOI Listing |
ACS Macro Lett
January 2025
Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.
View Article and Find Full Text PDFFood Chem
December 2024
Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:
The quality and safety of meat products are critical concerns in the food industry, and consumer demand for clean-label products is increasing. To meet these needs, this study aimed to develop a nitrite-free meat spread using an astaxanthin (0.04 wt%) and carvacrol (15 wt%) co-encapsulated emulsion (AE) and chitosan.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland.
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Trinity College Dublin, Department of Chemistry, Trinity College Dublin, Dublin, IRELAND.
The development of new synthetic strategies to introduce and control chirality in inorganic nanostructures has been highly stimulated by the broad spectrum of potential applications of these exiting nanomaterials. Molybdenum disulfide is among the most investigated transition metal dichalcogenides due to its promising properties for applications that spread from optoelectronic to spintronic. Herein, we report a new two-step approach for the production of chiroptically active semiconductor 2H MoS2 nanosheets with chiral morphology based on the manipulation of their crystallographic structure.
View Article and Find Full Text PDFPathogens
December 2024
Laboratory of Virology, National Institute for Infectious Disease "Lazzaro Spallanzani"-IRCCS, 00149 Rome, Italy.
Rift Valley Fever virus (RVFV) is a mosquito-borne virus with high pathogenic potential in ruminants and humans. Due to its high potential for spreading, it is considered a priority pathogen, and it is included in the Bluepoint list of the World Health Organization (WHO). Given the high pathogenic potential of the virus, it is crucial to develop a rapid heat-mediated inactivation protocol to create a safer working environment, particularly in medical facilities that lack a biosafety level 3 laboratory required for direct handling of RVFV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!