The first study of room-temperature macromolecular crystallography data acquisition with a silicon pixel detector is presented, where the data are collected in continuous sample rotation mode, with millisecond read-out time and no read-out noise. Several successive datasets were collected sequentially from single test crystals of thaumatin and insulin. The dose rate ranged between ∼ 1320 Gy s(-1) and ∼ 8420 Gy s(-1) with corresponding frame rates between 1.565 Hz and 12.5 Hz. The data were analysed for global radiation damage. A previously unreported negative dose-rate effect is observed in the indicators of global radiation damage, which showed an approximately 75% decrease in D(1/2) at sixfold higher dose rate. The integrated intensity decreases in an exponential manner. Sample heating that could give rise to the enhanced radiation sensitivity at higher dose rate is investigated by collecting data between crystal temperatures of 298 K and 353 K. UV-Vis spectroscopy is used to demonstrate that disulfide radicals and trapped electrons do not accumulate at high dose rates in continuous data collection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133521PMC
http://dx.doi.org/10.1107/S090904951100968XDOI Listing

Publication Analysis

Top Keywords

radiation damage
12
dose rate
12
data acquisition
8
pixel detector
8
global radiation
8
higher dose
8
data
6
radiation
4
damage room-temperature
4
room-temperature data
4

Similar Publications

We present an investigation into the effects of high-energy proton damage on charge trapping in germanium cross-strip detectors with the goal of accomplishing three important measurements. First, we calibrated and characterized the spectral resolution of a spare COSI-balloon detector in order to determine the effects of intrinsic trapping, finding that electron trapping due to impurities dominates over hole trapping in the undamaged detector. Second, we performed two rounds of proton irradiation of the detector in order to quantify, for the first time, the rate at which charge traps are produced by proton irradiation.

View Article and Find Full Text PDF

How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences.

View Article and Find Full Text PDF

The anxieties and concerns about health hazards caused by microwave has been growing recently. Previous studies have reported microwave induced structural and functional injuries to brain. However, the biological effects caused by compound microwave were largely unexplored.

View Article and Find Full Text PDF

Evaluation of natural polysaccharides from edible mushrooms for the treatment of male testicular injury caused by X-ray.

J Food Sci

January 2025

Engineering Research Center of Edible and Medicinal Fungi of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.

Radiation exposure can lead to reproductive damage (RD), for which there is currently no effective treatment. Natural compounds, particularly fungal polysaccharides, have shown promising therapeutic potential for RD. Due to limited availability of effective polysaccharides, research has turned to alternative sources from edible mushrooms.

View Article and Find Full Text PDF

Background: Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!