Several widely used techniques for the fabrication of three dimensional (3D) scaffolds utilize the particulate leaching method to achieve a porous structure. This method involves the selective leaching of a mineral or an organic compound to generate pores. However, scaffolds prepared by this technique tend to exhibit limited interconnectivity. Therefore, to enhance the interconnectivity of the scaffolds fabricated by particulate leaching, a polymeric porogen can be added during processing. Typically porogens are mixed into a polymer solution, powder, or melt. The mixture is subsequently cast, molded, or extruded, and then leaching the porogens results in porous scaffolds. Still, even though scaffold interconnectivity is improved through the addition of polymer porogens, particulate leaching does not yield scaffolds with uniform properties. This research introduces a new solventless approach, cryomilling, to blend porogens and attain interconnected porous scaffolds with uniform morphologies. To validate the efficacy of the suggested approach a comparison of the effect of various solid-state mixing approaches on scaffold morphology and mechanical properties will be made. In this study, salt particles and poly(ethylene oxide) (PEO) were mixed (manually or through cryomilling) with poly(e-caprolactone) (PCL) for the preparation of porous 3D PCL scaffolds, the mixtures were then compression molded, and subsequently, water was used to leach the porogens. Morphological and compressive properties of the resulting scaffolds will be discussed. This simple, novel, economical, organic solvent-free approach for the fabrication of 3D interconnected porous scaffolds holds promise for tissue engineering applications.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Industrial Engineering Department, School of Applied Technical Sciences, German Jordanian University, Amman, 11180, Jordan.
In this investigation, the influence of a combination of poly(ethylene-oxide) (PEO) and salt (NaCl) as water-soluble porogens on the synthesis of sustainable porous poly(ε-caprolactone) (PCL) membranes is explored. Nine mixture compositions are examined. PCL sheets are fabricated through the cryomilling, hot pressing, and porogen leaching approach.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, Waite Campus, University of Adelaide, Urrbrae, 5064, Australia. Electronic address:
Coastal wetland rehabilitation can provide nature-based solutions for climate change mitigation. The high carbon accumulation rate and carbon secured, potentially for several millennia, as soil organic carbon (SOC), is among the reasons. Measuring SOC storage and accrual over time are the main tools to understand rehabilitation success.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China. Electronic address:
In response to the increasingly severe issue of plastic waste, biodegradable plastics have garnered extensive attention as a potential alternative to traditional plastics. Among these materials, biodegradable plastics hold a dominant position. The objective of this study was to assess the environmental risks of five commercially available biodegradable plastics: polyglycolic acid (PGA), polylactic acid (PLA), poly(butylene succinate) (PBS), poly(butylene carbonate) (PBC), and poly(butylene adipate-co-terephthalate) (PBAT).
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China.
Biodegradable controlled delivery systems for mesenchymal stem cells (MSCs) have emerged as novel advancements in the field of regenerative medicine, particularly for accelerating bone fracture healing. This detailed study emphasizes the importance of quick and adequate fracture treatment and the limitations of existing methods. New approaches employing biodegradable scaffolds can be placed within a fracture to serve as a mechanical support and allow controlled release of in situ MSCs and bioactive agents.
View Article and Find Full Text PDFEnviron Technol
December 2024
Rothamsted Research, N Wyke, Devon, UK.
Soil erosion is a world-wide issue driven by land management and climate change. Research has focussed on soil loss rates from agricultural land. However, the loss of trace elements essential for soil and plant health, or potentially toxic elements that occur as impurities in fertilisers and manures, is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!