Sortase A as a tool for high-yield histatin cyclization.

FASEB J

Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.

Published: August 2011

Cyclic peptides are highly valued tools in biomedical research. In many cases, they show higher receptor affinity, enhanced biological activity, and improved serum stability. Technical difficulties in producing cyclic peptides, especially larger ones, in appreciable yields have precluded a prolific use in biomedical research. Here, we describe a novel and efficient cyclization method that uses the peptidyl-transferase activity of the Staphylococcus aureus enzyme sortase A to cyclize linear synthetic precursor peptides. As a model, we used histatin 1, a 38-mer salivary peptide with motogenic activity. Chemical cyclization of histatin 1 resulted in ≤ 3% yields, whereas sortase-mediated cyclization provided a yield of >90%. The sortase-cyclized peptide displayed a maximum wound closure activity at 10 nM, whereas the linear peptide displayed maximal activity at 10 μM. Circular dichroism and NMR spectroscopic analysis of the linear and cyclic peptide in solution showed no evidence for conformational changes, suggesting that structural differences due to cyclization only became manifest when these peptides were located in the binding domain of the receptor. The sortase-based cyclization technology provides a general method for easy and efficient manufacturing of large cyclic peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.11-182212DOI Listing

Publication Analysis

Top Keywords

cyclic peptides
12
peptide displayed
8
cyclization
6
peptides
5
activity
5
sortase tool
4
tool high-yield
4
high-yield histatin
4
histatin cyclization
4
cyclic
4

Similar Publications

Malaria, caused by species and transmitted by mosquitoes, continues to pose a significant global health threat. Pipecolisporin, a cyclic hexapeptide isolated from , has emerged as a promising antimalarial candidate due to its potent biological activity and stability. This study explores the synthesis, antimalarial activity, and computational studies of pipecolisporin, aiming to better understand its therapeutic potential.

View Article and Find Full Text PDF

Gut peptides, including glucagon-like peptide-1 (GLP-1), regulate metabolic homeostasis and have emerged as the basis for multiple state-of-the-art diabetes and obesity therapies. We previously showed that G protein-coupled receptor 17 (GPR17) is expressed in intestinal enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1 secretion. However, the GPR17-mediated molecular signaling pathways in EECs have yet to be fully deciphered.

View Article and Find Full Text PDF

Antibacterial and Antifungal Activities of Linear and Cyclic Peptides Containing Arginine, Tryptophan, and Diphenylalanine.

Antibiotics (Basel)

January 2025

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.

We have previously reported peptides composed of sequential arginine (R) residues paired with tryptophan (W) or 3,3-diphenyl-L-alanine residues (Dip), such as cyclic peptides [RW] and [R(Dip)], as antibacterial agents. Herein, we report antibacterial and antifungal activities of five linear peptides, namely ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), and (DipR)R, and five cyclic peptides [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], and [DipR], containing alternate positively charged R and hydrophobic W and Dip residues against fungal, Gram-positive, and Gram-negative bacterial pathogens. The minimum inhibitory concentrations (MICs) of all peptides were determined by the micro-broth dilution method against , , , , , , , , and .

View Article and Find Full Text PDF

Natural Cyclic Peptides: Synthetic Strategies and Biomedical Applications.

Biomedicines

January 2025

Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA.

Natural cyclic peptides, a diverse class of bioactive compounds, have been isolated from various natural sources and are renowned for their extensive structural variability and broad spectrum of medicinal properties. Over 40 cyclic peptides or their derivatives are currently approved as medicines, underscoring their significant therapeutic potential. These compounds are employed in diverse roles, including antibiotics, antifungals, antiparasitics, immune modulators, and anti-inflammatory agents.

View Article and Find Full Text PDF

Background: Fungal invasive infections caused by Candida species pose a substantial public health risk with limited therapeutic options. Antifungal susceptibility testing (AFST) is necessary to optimize the therapy. The study aimed to compare different AFST methods of Candida spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!