Monte Carlo simulation of the movement and detection efficiency of a whole-body counting system using a BOMAB phantom.

Radiat Prot Dosimetry

Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal.

Published: March 2012

This study reports on the computational analysis and experimental calibration of the whole-body counting detection equipment at the Nuclear and Technological Institute (ITN) in Portugal. Two state-of-the-art Monte Carlo simulation programmes were used for this purpose: PENELOPE and MCNPX. This computational work was undertaken as part of a new set of experimental calibrations, which improved the quality standards of this study's WBC system. In these calibrations, a BOMAB phantom, one of the industry standards phantoms for WBC calibrations in internal dosimetry applications, was used. Both the BOMAB phantom and the detection system were accurately implemented in the Monte Carlo codes. The whole-body counter at ITN possesses a moving detector system, which poses a challenge for Monte Carlo simulations, as most codes only accept static configurations. The continuous detector movement was approximately described in the simulations by averaging several discrete positions of the detector throughout the movement. The computational efficiency values obtained with the two Monte Carlos codes have deviations of less than 3.2 %, and the obtained deviations between experimental and computational efficiencies are less than 5 %. This work contributes to demonstrate the great effectiveness of using computational tools for understanding the calibration of radiation detection systems used for in vivo monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncr201DOI Listing

Publication Analysis

Top Keywords

monte carlo
16
bomab phantom
12
carlo simulation
8
whole-body counting
8
detector movement
8
monte
5
computational
5
simulation movement
4
detection
4
movement detection
4

Similar Publications

Compared with uncomplicated urinary tract infections (UTIs), complicated UTIs (cUTIs) including acute pyelonephritis (AP) present with significant morbidity, a higher risk of treatment failure and typically require longer courses of treatment, or alternative antibiotics. The emergence of drug-resistant organisms represents a considerable challenge in the treatment of patients with cUTIs/AP and has limited antibiotic options. Carbapenems are considered the current last line of therapy, however, carbapenem resistance represents a growing problem.

View Article and Find Full Text PDF

Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.

View Article and Find Full Text PDF

Radiation therapy (RT) is widely used for cancer treatment but is found with side effects of radiation dermatitis and fibrosis thereby calling for timely assessment. Nevertheless, current clinical assessment methods are found to be subjective, prone to bias, and accompanied by variability. There is, therefore, an unmet clinical need to explore a new assessment technique, ideally portable and affordable, making it accessible to less developed regions too.

View Article and Find Full Text PDF

Monte Carlo-based realistic simulation of optical coherence tomography angiography.

Biomed Opt Express

January 2025

Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Optical coherence tomography angiography (OCTA) offers unparalleled capabilities for non-invasive detection of vessels. However, the lack of accurate models for light-tissue interaction in OCTA jeopardizes the development of the techniques to further extract quantitative information from the measurements. In this manuscript, we propose a Monte Carlo (MC)-based simulation method to precisely describe the signal formation of OCTA based on the fundamental theory of light-tissue interactions.

View Article and Find Full Text PDF

Many human diseases result from a complex interplay of behavioral, clinical, and molecular factors. Integrating low-dimensional behavioral and clinical features with high-dimensional molecular profiles can significantly improve disease outcome prediction and diagnosis. However, while some biomarkers are crucial, many lack informative value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!