Formation and stability of eisosomes in the filamentous fungus Ashbya gossypii.

J Cell Sci

Biozentrum, University of Basel, Klingelbergstraße 50-70, CH 4056 Basel, Switzerland.

Published: May 2011

One hallmark of the rapid expansion of the polar surface of fungal hyphae is the spatial separation of regions of exocytosis and endocytosis at hyphal tips, as recently shown for Ashbya gossypii and Aspergillus nidulans. To determine where cortex-associated eisosomes form with respect to these two regions, we monitored fluorescently marked eisosomes in A. gossypii. Each minute, 1.6 ± 0.5 eisosomes form within the first 30 μm of each hypha and are exclusively subapical of the endocytosis region. This spatial separation of the processes of eisosome formation and endocytosis, and the much lower frequency of eisosome formation compared with that of endocytic vesicle production do not support a recently proposed role for eisosomes in endocytosis. Levels of mRNA encoding eisosome components are tenfold higher in spores than in hyphae, explaining the observed higher eisosome density at the cortex of germ bubbles. As in Saccharomyces cerevisiae, eisosomes in A. gossypii are very stable. In contrast to S. cerevisiae, however, the A. gossypii homologue of Pil1, one of the main eisosome subunits, is very important for polar growth, whereas the homologue of Nce102, which colocalizes with eisosomes, is not needed for eisosome stability. By testing partial deletions of the A. gossypii homologue of Ymr086w, another component of the eisosome, we identified a novel protein domain essential for eisosome stability. We also compare our results with recent findings about eisosomes in A. nidulans.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.082487DOI Listing

Publication Analysis

Top Keywords

eisosomes
8
ashbya gossypii
8
spatial separation
8
eisosomes form
8
eisosomes gossypii
8
eisosome
8
eisosome formation
8
gossypii homologue
8
eisosome stability
8
gossypii
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!