AI Article Synopsis

  • The study assessed the carcinogenic effects of asphalt fume condensates on male C3H/HeNCrl mice over two years, using samples from both paving and built-up roofing asphalt.
  • The paving fume condensate showed no significant carcinogenic effects, with only one benign tumor found among 80 mice, while the lab-generated BURA condensate led to a significant increase in squamous cell carcinomas in 55% of subjects.
  • The field-matched BURA condensate also caused tumors but to a lesser extent, along with confirmed skin irritation in both types of BURA condensates.

Article Abstract

Asphalt (bitumen) fume condensates collected from the headspace above paving and Type III built up roofing asphalt (BURA) tanks were evaluated in two-year dermal carcinogenicity assays in male C3H/HeNCrl mice. A third sample was generated from the BURA using a NIOSH laboratory generation method. Similar to earlier NIOSH studies, the BURA fume condensates were applied dermally in mineral oil twice per week; the paving sample was applied 7 days/week for a total weekly dose of 50 mg/wk in both studies. A single benign papilloma was observed in a group of 80 mice exposed to paving fume condensate at the end of the two-year study and only mild skin irritation was observed. The lab generated BURA fume condensate resulted in statistically significant (P<0.0001) increases in squamous cell carcinomas (35 animals or 55% of animals at risk). The field-matched BURA condensate showed a weaker but significant (P=0.0063) increase (8 carcinomas or 13% of animals) and a longer average latency (90 weeks vs. 76 for the lab fume). Significant irritation was observed in both BURA condensates. It is concluded that the paving fume condensate was not carcinogenic under the test conditions and that the field-matched BURA fume condensate produced a weak tumor response compared to the lab generated sample.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2011.04.003DOI Listing

Publication Analysis

Top Keywords

dermal carcinogenicity
12
fume condensates
12
asphalt bitumen
8
bitumen fume
8
generated bura
8
bura fume
8
fume condensate
8
fume
5
asphalt
4
asphalt fume
4

Similar Publications

The rapid development of the global chemical industry has led to widespread groundwater contamination, with frequent pollution incidents posing severe threats to water safety. However, there has been insufficient assessment of the health risks posed by chlorinated hydrocarbon contamination in groundwater around chemical industrial parks. This study evaluates the chlorinated hydrocarbon contamination in groundwater at a chemical park and conducts a multi-pathway health risk assessment, identifying the key risk pollutants.

View Article and Find Full Text PDF

Green Tea Catechins and Skin Health.

Antioxidants (Basel)

December 2024

Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China.

Green tea catechins (GTCs) are a group of bioactive polyphenolic compounds found in fresh tea leaves ( (L.) O. Kuntze).

View Article and Find Full Text PDF

Distribution of potentially toxic elements in sediments of the municipal river channel (Balu), Dhaka, Bangladesh: Ecological and health risks assessment.

J Contam Hydrol

January 2025

International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

The concern of potential toxic elements (PTEs) contamination in the river ecosystem is growing due to anthropological activity. The contents of seven PTEs in sediments from the Balu River channel were analyzed using atomic absorption spectroscopy (AAS) and an environmental risk model. Several PTEs were found in the sediment at high levels, including zinc (Zn), copper (Cu), arsenic (As), lead (Pb), cadmium (Cd), nickel (Ni), and mercury (Hg), that might pose a risk to human and ecological health.

View Article and Find Full Text PDF

Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively.

View Article and Find Full Text PDF

Cotton undergarments as a tool for polycyclic aromatic hydrocarbons whole body dosimetry of firefighters.

J Occup Environ Hyg

January 2025

Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany.

Firefighters are exposed to a variety of hazardous substances during firefighting activities. Fire smoke contains polycyclic aromatic hydrocarbons (PAHs) some of which have been shown to cause cancer in humans. To assess dermal exposure of firefighters during real-life firefighting, a whole-body dosimetry method was applied to determine the PAH that settles on the skin despite firefighters wearing personal protective equipment (PPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!