Efficient bubbles for visual categorization tasks.

Vision Res

Institute of Neuroscience and Psychology, University of Glasgow, UK.

Published: June 2011

Bubbles is a classification image technique that randomly samples visual information from input stimuli to derive the diagnostic features that observers use in visual categorization tasks. To reach statistical significance, Bubbles performs an exhaustive and repetitive search in the stimulus space. To reduce the search trials, we developed an adaptive method that uses reinforcement learning techniques to optimize sampling by exploiting the observer's history of categorization. We compared the performance of the original and the adaptive Bubbles algorithms in a model observer and eight human adults who all resolved the same visual categorization task (i.e., five facial expressions of emotion). We demonstrate the feasibility of a substantial reduction (by a factor of ∼2) in the number of search trials required to locate the same diagnostic features with the adaptive method, but only when the observer reaches a performance threshold of 50% correct for each expression category. When this threshold is not reached, both the original and adaptive algorithms converge in the same number of trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2011.04.007DOI Listing

Publication Analysis

Top Keywords

visual categorization
12
categorization tasks
8
diagnostic features
8
search trials
8
adaptive method
8
original adaptive
8
efficient bubbles
4
visual
4
bubbles visual
4
categorization
4

Similar Publications

Through the mobilization of movable objects due to the extreme hydraulic conditions during a flood event, blockages, damage to infrastructure, and endangerment of human lives can occur. To identify potential hazards from aerial imagery and take appropriate precautions, a change detection tool (CDT) was developed and tested using a study area along the Aisch River in Germany. The focus of the CDT development was on near real-time analysis of point cloud data generated by structure from motion from aerial images of temporally separated surveys, enabling rapid and targeted implementation of measures.

View Article and Find Full Text PDF

Event-based surveillance is crucial for the early detection and rapid response to potential public health risks. In recent years, social networking services (SNS) have been recognized for their potential role in this domain. Previous studies have demonstrated the capacity of SNS posts for the early detection of health crises and affected individuals, including those related to infectious diseases.

View Article and Find Full Text PDF

Travel restrictions during the novel coronavirus, SARS-CoV-2 (COVID-19) public health emergency affected the U.S. Food and Drug Administration's (FDA) ability to conduct on-site bioavailability/bioequivalence (BA/BE) and Good Laboratory Practice (GLP) nonclinical inspections.

View Article and Find Full Text PDF

Scene categorization by Hessian-regularized active perceptual feature selection.

Sci Rep

January 2025

College of Computer Sciences, Anhui University, Hefei, 230039, China.

Decoding the semantic categories of complex sceneries is fundamental to numerous artificial intelligence (AI) infrastructures. This work presents an advanced selection of multi-channel perceptual visual features for recognizing scenic images with elaborate spatial structures, focusing on developing a deep hierarchical model dedicated to learning human gaze behavior. Utilizing the BING objectness measure, we efficiently localize objects or their details across varying scales within scenes.

View Article and Find Full Text PDF

Objective Ultrasound is the predominant modality in medical practice for evaluating thyroid nodules. Currently, diagnosis is typically based on textural information. This study aims to develop an automated texture classification approach to aid physicians in interpreting ultrasound images of thyroid nodules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!