Bubbles is a classification image technique that randomly samples visual information from input stimuli to derive the diagnostic features that observers use in visual categorization tasks. To reach statistical significance, Bubbles performs an exhaustive and repetitive search in the stimulus space. To reduce the search trials, we developed an adaptive method that uses reinforcement learning techniques to optimize sampling by exploiting the observer's history of categorization. We compared the performance of the original and the adaptive Bubbles algorithms in a model observer and eight human adults who all resolved the same visual categorization task (i.e., five facial expressions of emotion). We demonstrate the feasibility of a substantial reduction (by a factor of ∼2) in the number of search trials required to locate the same diagnostic features with the adaptive method, but only when the observer reaches a performance threshold of 50% correct for each expression category. When this threshold is not reached, both the original and adaptive algorithms converge in the same number of trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.visres.2011.04.007 | DOI Listing |
Environ Monit Assess
January 2025
Technische Hochschule Nürnberg Georg Simon Ohm, Institute of Hydraulic Engineering and Water Resources Management, Nuremberg, Germany.
Through the mobilization of movable objects due to the extreme hydraulic conditions during a flood event, blockages, damage to infrastructure, and endangerment of human lives can occur. To identify potential hazards from aerial imagery and take appropriate precautions, a change detection tool (CDT) was developed and tested using a study area along the Aisch River in Germany. The focus of the CDT development was on near real-time analysis of point cloud data generated by structure from motion from aerial images of temporally separated surveys, enabling rapid and targeted implementation of measures.
View Article and Find Full Text PDFSci Rep
January 2025
Chubu Institute for Advanced Studies, Chubu University, Kasugai, Aichi, Japan.
Event-based surveillance is crucial for the early detection and rapid response to potential public health risks. In recent years, social networking services (SNS) have been recognized for their potential role in this domain. Previous studies have demonstrated the capacity of SNS posts for the early detection of health crises and affected individuals, including those related to infectious diseases.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
OSIS, Silver Spring, Maryland, U.S.A.
Travel restrictions during the novel coronavirus, SARS-CoV-2 (COVID-19) public health emergency affected the U.S. Food and Drug Administration's (FDA) ability to conduct on-site bioavailability/bioequivalence (BA/BE) and Good Laboratory Practice (GLP) nonclinical inspections.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer Sciences, Anhui University, Hefei, 230039, China.
Decoding the semantic categories of complex sceneries is fundamental to numerous artificial intelligence (AI) infrastructures. This work presents an advanced selection of multi-channel perceptual visual features for recognizing scenic images with elaborate spatial structures, focusing on developing a deep hierarchical model dedicated to learning human gaze behavior. Utilizing the BING objectness measure, we efficiently localize objects or their details across varying scales within scenes.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Beijing institute of control and electronic technology, 51 Beilijia, Muxidi, Xicheng District, Beijing 100038, Beijing, 100038, CHINA.
Objective Ultrasound is the predominant modality in medical practice for evaluating thyroid nodules. Currently, diagnosis is typically based on textural information. This study aims to develop an automated texture classification approach to aid physicians in interpreting ultrasound images of thyroid nodules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!