In this paper, we presented the preparation procedure of Pt nanoparticles with the well-controlled polyhedral morphology and size by a modified polyol method using AgNO(3) in accordance with the reduction of H(2)PtCl(6) in EG at high temperature around 160°C. The methods of UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and high resolution (HR) TEM measurements were used to characterize their surface morphology, size, and crystal structure. We have observed that the polyhedral Pt nanoparticles of sharp edges and corners were produced in the preferential homogenous growth as well as the formation of porous and large Pt particles by self-aggregation and assembly originating from as-prepared polyhedral Pt nanoparticles. It is most impressive to find that the arrangement of Pt nanoparticles was observed in their surface attachments, self-aggregation, random and directed surface self-assembly by the bottom-up approach. Their high electrocatalytic activity for methanol oxidation was predicted. The findings and results showed that the polyhedral Pt nanoparticle-based catalysts exhibited the high electrocatalytic activity for their potential applications in developing the efficient Pt-based catalysts for direct methanol fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2011.03.029DOI Listing

Publication Analysis

Top Keywords

polyhedral nanoparticles
12
self-aggregation assembly
8
morphology size
8
high electrocatalytic
8
electrocatalytic activity
8
polyhedral
5
nanoparticles
5
synthesis characterization
4
characterization polyhedral
4
nanoparticles catalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!