Major Depressive Disorder (MDD) is a psychiatric condition that represents an important public health concern in modern society. Current pharmacological antidepressant treatments improve depressive symptoms through complex mechanisms that are incompletely understood. There is a consensus that in the clinic they act through the modulation of monoaminergic neurotransmission, primarily involving the serotonin and norepinephrine systems. Recent studies have suggested that action of antidepressants on synaptic plasticity is mediated by their regulatory influence not only upon small-molecule neurotransmitters, but also via neuropeptides which may act both as neurotransmitters and as neuromodulators. Prominent among these neuropeptides is PACAP, whose signaling system is intensively studied for its pleiotropic involvement in various physiological and pathological conditions. This review outlines the current knowledge concerning the PACAP signaling system's involvement in depressive disorders.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138161211795589328DOI Listing

Publication Analysis

Top Keywords

pacap signaling
12
signaling system
8
role pacap
4
system depression
4
depression major
4
major depressive
4
depressive disorder
4
disorder mdd
4
mdd psychiatric
4
psychiatric condition
4

Similar Publications

PAC1 Agonist Maxadilan Reduces Atherosclerotic Lesions in Hypercholesterolemic ApoE-Deficient Mice.

Int J Mol Sci

December 2024

Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany.

A possible involvement of immune- and vasoregulatory PACAP signaling at the PAC1 receptor in atherogenesis and plaque-associated vascular inflammation has been suggested. Therefore, we tested the PAC1 receptor agonist Maxadilan and the PAC1 selective antagonist M65 on plaque development and lumen stenosis in the ApoE atherosclerosis model for possible effects on atherogenesis. Adult male ApoE mice were fed a cholesterol-enriched diet (CED) or standard chow (SC) treated with Maxadilan, M65 or Sham.

View Article and Find Full Text PDF

Introduction: Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic and debilitating condition marked by bladder pain, urinary urgency, and frequency. The pathophysiology of IC/BPS remains poorly understood, with limited therapeutic options available. The role of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptor PAC1 in IC/BPS has not been thoroughly investigated, despite their potential involvement in inflammation and sensory dysfunction.

View Article and Find Full Text PDF

Introduction: The efferent vestibular system (EVS) originates in brainstem efferent vestibular nuclei (EVN) and modifies afferent vestibular signals at their source, in peripheral vestibular organs. Recent evidence suggests that EVS is also involved in the development of motion sickness symptoms, including vertigo and nausea, but the underlying mechanism is unknown. One possible link between EVN and motion sickness symptoms is through the neuropeptide calcitonin gene-related peptide (CGRP).

View Article and Find Full Text PDF

The adrenal medulla is a key effector of the sympathetic nervous system in the periphery. Its primary function is to translate variations in sympathetic activity into hormone outputs that modify end organ function throughout the body. These hormones include epinephrine, norepinephrine, and a variety of vasoactive peptides.

View Article and Find Full Text PDF

Chromaffin cells of the adrenal medulla have an important role in the sympathetic stress response. They secrete catecholamines and other hormones into the bloodstream upon stimulation by the neurotransmitter pituitary adenylate cyclase-activating polypeptide (PACAP). PACAP causes a long-lasting and robust secretory response from chromaffin cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!