The molecular interactions occurring at the interface between dendritic cells (DCs) and T cells play an important role in the immune surveillance against infectious agents, as well as in autoimmune pathogenesis. Therefore, regulation of this interaction arises as an important tool for the prevention and treatment of immune disorders and to improve the protection against pathogens without causing detrimental inflammation. Some of the molecular interactions defining the outcome of the DC-T cell interaction are: T-cell receptor (TCR) binding to the pMHC on the DC surface, which is responsible for the antigenic specificity; and the ratio of activating/inhibitory receptor pairs on the surface of DCs and T cells, which modulate DC immunogenicity and T-cell function, respectively. An alteration in the proper function of these molecules could lead to unbalanced DC-T-cell synapses that either cause a failure to control infections or exacerbated inflammation. Furthermore, some pathogens have developed molecular strategies to impair the function of the synapse to evade adaptive immunity. In this article, we will discuss recent work relative to the molecular mechanisms controlling DC-T-cell synapse and their implications on immunoregulation to control autoimmunity and potentiate pathogen immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/imt.11.38 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!