We report the first use of redox nanoparticles of cerium oxide as colorimetric probes in bioanalysis. The method is based on changes in the physicochemical properties of ceria nanoparticles, used here as chromogenic indicators, in response to the analyte. We show that these particles can be fully integrated in a paper-based bioassay. To construct the sensor, ceria nanoparticles and glucose oxidase were coimmobilized onto filter paper using a silanization procedure. In the presence of glucose, the enzymatically generated hydrogen peroxide induces a visual color change of the ceria nanoparticles immobilized onto the bioactive sensing paper, from white-yellowish to dark orange, in a concentration-dependent manner. A detection limit of 0.5 mM glucose with a linear range up to 100 mM and a reproducibility of 4.3% for n = 11 ceria paper strips were obtained. The assay is fully reversible and can be reused for at least 10 consecutive measurement cycles, without significant loss of activity. Another unique feature is that it does not require external reagents, as all the sensing components are fixed onto the paper platform. The bioassay can be stored for at least 79 days at room temperature while maintaining the same analytical performance. An example of analytical application was demonstrated for the detection of glucose in human serum. The results demonstrate the potential of this type of nanoparticles as novel components in the development of robust colorimetric bioassays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac200697y | DOI Listing |
Int J Biol Macromol
December 2024
School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China. Electronic address:
Nano Lett
December 2024
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
Excessive reactive oxygen species (ROS) generated by ultraviolet (UV) irradiation significantly contribute to photoaging by increasing the level of matrix metalloproteinases (MMPs), accelerating collagen degradation. Commercial dermal fillers offer temporary wrinkle reduction via volume enhancement. In this study, we propose tilapia-derived collagen hydrogels embedded with ceria nanoparticles (Ce@Col gels) as long-lasting dermal fillers for UVB-induced photoaging.
View Article and Find Full Text PDFSci Adv
December 2024
Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
The landmark discovery of gold catalysts has aroused substantial interest in heterogeneous catalysis, yet the catalytic mechanism remains elusive. For carbon monoxide oxidation on gold nanoparticles (NPs) supported on ceria surfaces, it is widely believed that carbon monoxide adsorbs on the gold particles, while the reaction occurs at the gold/ceria interface. Here, we have investigated the dynamic changes of supported gold NPs with various sizes in a carbon monoxide oxidation atmosphere using deep potential molecular dynamics simulations.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece.
The water-gas shift (WGS) reaction is one of the most significant reactions in hydrogen technology since it can be used directly to produce hydrogen from the reaction of CO and water; it is also a side reaction taking place in the hydrocarbon reforming processes, determining their selectivity towards H production. The development of highly active WGS catalysts, especially at temperatures below ~450 °C, where the reaction is thermodynamically favored but kinetically limited, remains a challenge. From a fundamental point of view, the reaction mechanism is still unclear.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 31, Moscow 119991, Russia.
Cerium dioxide sols stabilised with L-malic acid were shown to exhibit significant antioxidant activity towards alkyl peroxyl radicals in the range of ligand:CeO molar ratios of 0.2-1 (0.2:1, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!