The photocatalytic properties of titanium dioxide are well known and have many applications including the removal of organic contaminants and production of self-cleaning glass. There is an increasing interest in the application of the photocatalytic properties of TiO(2) for disinfection of surfaces, air and water. Reviews of the applications of photocatalysis in disinfection (Gamage and Zhang 2010; Chong et al., Wat Res 44(10):2997-3027, 2010) and of modelling of TiO(2) action have recently been published (Dalrymple et al. , Appl Catal B 98(1-2):27-38, 2010). In this review, we give an overview of the effects of photoactivated TiO(2) on microorganisms. The activity has been shown to be capable of killing a wide range of Gram-negative and Gram-positive bacteria, filamentous and unicellular fungi, algae, protozoa, mammalian viruses and bacteriophage. Resting stages, particularly bacterial endospores, fungal spores and protozoan cysts, are generally more resistant than the vegetative forms, possibly due to the increased cell wall thickness. The killing mechanism involves degradation of the cell wall and cytoplasmic membrane due to the production of reactive oxygen species such as hydroxyl radicals and hydrogen peroxide. This initially leads to leakage of cellular contents then cell lysis and may be followed by complete mineralisation of the organism. Killing is most efficient when there is close contact between the organisms and the TiO(2) catalyst. The killing activity is enhanced by the presence of other antimicrobial agents such as Cu and Ag.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079867 | PMC |
http://dx.doi.org/10.1007/s00253-011-3213-7 | DOI Listing |
Sci Rep
January 2025
Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
This study investigated the antimicrobial efficacy of graphene, titanium dioxide nanoparticles (TiO2NPs), and calcium oxide nanoparticles (CaONPs) against various microorganisms in dairy wastewater. The minimum inhibitory concentration (MIC) of graphene was determined to be 41.66 mg/L for Escherichia coli and 33.
View Article and Find Full Text PDFBurns Trauma
January 2025
Research Group of Immune Cell Communication, Department of Immune Medicine, Universitätsklinikum Regensburg | UKR, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
Effective wound management and treatment are crucial in clinical practice, yet existing strategies often fall short in fully addressing the complexities of skin wound healing. Recent advancements in tissue engineering have introduced innovative approaches, particularly through the use of nanobiomaterials, to enhance the healing process. In this context, titanium dioxide nanoparticles (TiO NPs) have garnered attention due to their excellent biological properties, including antioxidant, anti-inflammatory, and antimicrobial properties.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry, University of Bath, Claverton Down, Bath, England BA2 7AY, U.K.
We discuss the photoelectroanalytical performance of a brookite-phase titanium dioxide (TiO) platform electrodeposited onto graphene foam (GF) at low temperatures. The scalable electrosynthesis process eliminates the need for thermal annealing, which is impractical for carbon-based electrodes. Films resulting from a 10 min electrodeposition (TiO-10/GF) exhibit enhanced photocurrents, reaching 170 μA cm -twice the value for TiO films on traditional screen-printed carbon electrodes (82 μA cm ).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
The aggregation state of nano-TiO in the environment is altered under marine heatwaves (MHWs), thus affecting its bioavailability and toxicity to the marine organisms. Here, we investigated the toxic mechanisms and effects of nano-TiO on gut-hepatopancreas axis health of Mytilus coruscus exposed to 25 and 250 μg/L of nano-TiO under laboratory-simulated MHW. Compared with the control conditions or post-MHW cooling phase, prolonged MHW exposure significantly inhibited digestive function, decreased immune-related enzymes activities, and caused neurotoxicity in the mussels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!