Highly chemoselective hydrogenation of crotonaldehyde over Ag-In/SBA-15 fabricated by a modified "two solvents" strategy.

Chem Commun (Camb)

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, PR China.

Published: June 2011

In the challenging crotonaldehyde hydrogenation to crotyl alcohol, an Ag-In/SBA-15 catalyst fabricated by a modified "two solvents" strategy shows an unprecedentedly high yield of 86% at a selectivity of 87%, which exceeds the best results on Pt-, Au- and other Ag-based heterogeneous catalysts reported so far.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cc11013fDOI Listing

Publication Analysis

Top Keywords

fabricated modified
8
modified "two
8
"two solvents"
8
solvents" strategy
8
highly chemoselective
4
chemoselective hydrogenation
4
hydrogenation crotonaldehyde
4
crotonaldehyde ag-in/sba-15
4
ag-in/sba-15 fabricated
4
strategy challenging
4

Similar Publications

In this study, oil-in-water (O/W) high internal phase emulsions (HIPEs) with enhanced antioxidative properties stabilized by octenyl succinic anhydride modified starch (OSAS)/(-)-Epigallocatechin-3-gallate (EGCG) mixtures were prepared. The influence of EGCG concentration (0-0.2 %, w/v), NaCl concentration (0-400 mmol/L), and temperature (25-90 °C) on the stability of the HIPEs was evaluated.

View Article and Find Full Text PDF

Chitosan-based nanocomposite films incorporated with AgNPs/porphyrinic MOFs for killing pathogenic bacteria.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China. Electronic address:

In this work, a nanocomposite film, designated as CS/PA, was fabricated by integrating chitosan (CS), porphyrinic porous coordination network (PCN), and silver nanoparticles (AgNPs). PCN modified AgNPs was denoted as PCN-AgNPs (PA). The synthesis of PA was verified through transmission electron microscope, Zeta potential, hydrated particle size, element mapping.

View Article and Find Full Text PDF

The durability and flame retardancy of cotton fabrics have been the focus of long-term research. In this paper, a method for preparing flame retardants through the direct modification of biomass was proposed, and the durable flame retardant of homologous cottonseed meal modified biomass flame retardants for cotton fabrics was achieved through biomass composition analysis and modeling. In this study, a cottonseed meal-phosphoric acid-boric acid synergistic bio-based flame retardant (CPB) was synthesized and characterized.

View Article and Find Full Text PDF

In the fast-paced quest for early cancer detection, noninvasive screening techniques have emerged as game-changers, offering simple and accessible avenues for precession diagnostics. In line with this, our study highlights the potential of silver nanoparticle-decorated titanium carbide MXene nanosheets (TiC_AgNPs) as an electroactive interface for the noninvasive diagnosis of oral carcinoma based on the prevalence of the salivary biomarker, tumor necrosis factor-α (TNF-α). An in situ reduction was utilized to synthesize the TiC_AgNPs nanohybrid, wherein TiC acts as the reducing agent, and the resulting nanohybrid was subjected to various characterization techniques to examine the optical, structural, and morphological attributes.

View Article and Find Full Text PDF

Long-Life Zinc Anodes via Molecular-Layer-Deposited Inorganic-Organic Hybrid Titanicone Thin Films.

ACS Appl Mater Interfaces

January 2025

National Laboratory of Solid-State Microstructure, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China.

Zinc-ion batteries (ZIBs) have consistently faced challenges related to the instability of the zinc anode. Uncontrolled dendrite growth, hydrogen evolution reaction (HER), and byproduct accumulation on the zinc anode severely affect the cycling life of ZIBs. Herein, inorganic-organic hybrid thin films of titanicones (Ti-based hydroquinone, TiHQ) were fabricated by molecular layer deposition (MLD) technology to modify the zinc metal anode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!