The reaction of N,N-bis(2-pyridylmethyl)-2-aminoethanol (bpaeOH), NaSCN/NaN(3), and metal (M) ions [M = Mn(II), Fe(II/III), Co(II)] in MeOH, leads to the isolation of a series of monomeric, trimeric, and tetrameric metal complexes, namely [Mn(bpaeOH)(NCS)(2)] (1), [Mn(bpaeO)(N(3))(2)] (2), [Fe(bpaeOH)(NCS)(2)] (3), [Fe(4)(bpaeO)(2)(CH(3)O)(2)(N(3))(8)] (4), [Co(bpaeOH)(NCS)(2)] (5), and [Co(3)(bpaeO)(2)(NO(3))(N(3))(4)](NO(3)) (6). These compounds have been investigated by single crystal X-ray diffractometry and magnetochemistry. In complex 1 the Mn(II) is bonded to one bpaeOH and two thiocyanate ions, while in complex 2 it is coordinated to a deprotonated bpaeO(-) and two azide ions. The oxidation states of manganese ions are 2+ for 1 and 3+ for 2, respectively, indicating that the different oxidation states depend on the type of binding anions. The structures of monomeric iron(II) and cobalt(II) complexes 3 and 5 with two thiocyanate ions are isomorphous to that of 1. Compounds 1, 2, 3, and 5 exhibit high-spin states in the temperature range 5 to 300 K. 4 contains two different iron(III) ions in an asymmetric unit, one is coordinated to a deprotonated bpaeO(-), an azide ion, and a methoxy group, and the other is bonded to three azide ions and two oxygens from bpaeO(-) and a methoxy group. Two independent iron(III) ions in 4 form a tetranuclear complex by symmetry. 4 displays both ferromagnetic and antiferromagnetic couplings (J = 9.8 and -14.3 cm(-1)) between the iron(III) ions. 6 is a mixed-valence trinuclear cobalt complex, which is formulated as Co(III)(S = 0)-Co(II)(S = 3/2)-Co(III)(S = 0). The effective magnetic moment at room temperature corresponds to the high-spin cobalt(II) ion (∼4.27 μ(B)). Interestingly, 6 showed efficient catalytic activities toward various olefins and alcohols with modest to excellent yields, and it has been proposed that a high-valent Co(V)-oxo species might be responsible for oxygen atom transfer in the olefin epoxidation and alcohol oxidation reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1dt10028a | DOI Listing |
Chemosphere
December 2024
V.V. Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation. Electronic address:
Acta Crystallogr C Struct Chem
December 2024
University of Melbourne, School of Chemistry, Grattan Street, Parkville, 3052, Australia.
Dalton Trans
December 2024
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia.
Small Methods
October 2024
Department of Chemistry, Engineering Faculty, Inorganic Chemistry Department, Istanbul University-Cerrahpasa, Istanbul, 34320, Turkey.
A thiosemicarbazone-based iron(III) complex is prepared and used in the preparation of a supercapacitor electrode material. This electrode is produced by a solvothermal reaction of polypyrrole and the complex on carbon felt. The characterization of the complex and material is carried out using UV-vis, elemental analysis, FT-IR, XRD, BET, and TGA methods, and the surface morphology is examined using SEM technique.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia. Electronic address:
A nanocomposite of tannic acid and cellulose nanowhiskers (CNW)-reinforced polysulfone (PSF) was used to develop a metallochromic nanofibrous membrane sensor for iron(III) in aqueous media. Tannic acid was used as an active detecting probe, whereas the CNW@PSF composite was employed as a hosting material. Cellulose nanowhiskers (7-12 nm) were obtained from microcrystalline cellulose (MCC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!