[Adenosine: physiological and pharmacological actions].

Arch Biol Med Exp

Departamento de Ciencias Fisiológicas (Farmacología), Facultad de Ciencias Biológicas y de Recursos Naturales, Universidad de Concepción, Chile.

Published: May 1990

Adenosine exerts numerous effects in the central and autonomic nervous systems, most of which seem to be receptor mediated. Several studies have revealed two distinct receptors, based upon effects of adenosine on adenylate cyclase activity, designed A1 or A2 according to whether the cyclase is inhibited or activated. However, since not all adenosine receptors are linked to adenylate cyclase some authors base their classification on the rank orders of potencies of adenosine analogues in eliciting responses. The purine seems to function as a modulatory substance in the heart, blood, ileum, vas deferens, and adipose tissue. In addition, important responses to exogenously added adenosine are also induced in the bronchi, urinary bladder, taenia coli, parietal cells of the stomach and renin secretion. Adenosine and its analogues elicit anticonvulsant responses, sedation and hypothermia through their actions in the central nervous system. The mechanisms by which adenosine elicits its responses have not been clearly established. The activation of A1 receptors depresses the release of neurotransmitters and inhibit the influx of Ca into nerve terminals. Whether this effect is induced by interaction with Ca channels or by impairment of Ca dependent processes associated with neurotransmitter release is unknown. In the rat heart adenosine inhibits adenylate cyclase and subsequently the phosphorylation of L-type Ca channels, resulting in a decrease of calcium influx in the muscle cell. The responses to activation of A2 receptors in smooth muscle consist in relaxation presumptively by an increase of K current which would hyperpolarize the cell.

Download full-text PDF

Source

Publication Analysis

Top Keywords

adenylate cyclase
12
adenosine
8
adenosine analogues
8
activation receptors
8
responses
5
[adenosine physiological
4
physiological pharmacological
4
pharmacological actions]
4
actions] adenosine
4
adenosine exerts
4

Similar Publications

Historically, plant derived natural products and their crude extracts have been used to treat a wide range of ailments across the world. Biogerontology research aims to explore the molecular basis of aging and discover new anti-aging therapeutic compounds or formulations to combat the detrimental effects of aging and promote a healthy life span. The budding yeast has been, and continues to be, an indispensable model organism in the field of biomedical research for discovering the molecular basis of aging has preserved nutritional signaling pathways (such as the target of rapamycin (TOR)-Sch9 and the Ras-AC-PKA (cAMP-dependent protein kinase) pathways, and shows two distinct aging paradigms chronological life span (CLS) and replicative life span (RLS).

View Article and Find Full Text PDF

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts.

View Article and Find Full Text PDF

Previous studies have identified three families of knotted phytochrome photoreceptors in cyanobacteria. We describe a fourth type: 'hybrid' phytochromes with putative bilin-binding cysteine residues in both their N-terminal 'knot' extensions and cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domains, which we designate as dual-cysteine bacteriophytochromes (DCBs). Recombinant expression of DCBs in Escherichia coli yields photoactive phycocyanobilin (PCB) adducts with red/far-red photocycles similar to those of the GAF-Cys-containing cyanobacterial phytochromes (Cph1s).

View Article and Find Full Text PDF

Background And Purpose: Pituitary adenylate cyclase activating polypeptide (PACAP) is a human migraine trigger that is being targeted for migraine. The δ-opioid receptor (δ-receptor) is a novel target for the treatment of migraine, but its mechanism remains unclear. The goals of this study were to develop a mouse PACAP-headache model using clinically significant doses of PACAP; determine the effects of δ-receptor activation in this model; and investigate the co-expression of δ-receptors, PACAP and PACAP-PAC1 receptor.

View Article and Find Full Text PDF

Adenylate cyclase family members have recently received attention as novel therapeutic targets. However, the significance of adenylate cyclase 9 (ADCY9) in breast cancer has not been elucidated. Here, we evaluated expression in breast cancer (BC) cell lines, and polymerase chain reaction array analysis was performed to determine the correlations between expression levels and 84 tumor-associated genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!