Linear energy transfer of proton clusters.

Phys Med Biol

Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.

Published: May 2011

In conventional particle accelerators, protons are produced in long pulses, in which the average inter-proton distance is in the order of tens of centimeters or more. Therefore, the radiobiology of conventionally accelerated protons is primarily governed by the interaction of a single proton with the cell. In a laser-plasma interaction scheme, the accelerated protons come as a single bunch of particles (less than 1 ps in duration) with inter particle distances that are many orders of magnitude shorter than those in conventional particle accelerators. As laser-accelerated protons traverse the medium, they not only interact with each other, but also with the host medium. It is shown that when the average distance between protons in a cluster is less than or equal to their velocity divided by the characteristic frequency of the collective excitations supported by the medium, the cluster's linear stopping power increases and can reach several times that of sparsely distributed protons. As a result, the elevated radio biological effectiveness of the proton cluster may take place and conditions for its experimental observation are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/56/10/015DOI Listing

Publication Analysis

Top Keywords

conventional particle
8
particle accelerators
8
accelerated protons
8
protons
6
linear energy
4
energy transfer
4
transfer proton
4
proton clusters
4
clusters conventional
4
accelerators protons
4

Similar Publications

Bacterial denitrification is a main pathway for soil NO sinks, which is crucial for assessing and controlling NO emissions. Biobased polyhydroxyalkanoate (PHA) microplastic particles (MPs) degrade slowly in conventional environments, remaining inert for extended periods. However, the impacts of PHA microplastic aging on the bacterial NO sink capacity before degradation remain poorly understood.

View Article and Find Full Text PDF

Addressing environmental challenges such as pollution and resource depletion requires innovative industrial and municipal waste management approaches. Cement production, a significant contributor to greenhouse gas emissions, highlights the need for eco-friendly building materials to combat global warming and promote sustainability. This study evaluates the simultaneous use of Sugarcane Bagasse Ash (SCBA) and Stone Dust (SD) as partial replacements by volume for cement and sand, respectively, at varying ratios in eco-strength concrete mixes designed for 28 MPa (ES-28) and 34 MPa (ES-34), emphasizing their economic and environmental benefits.

View Article and Find Full Text PDF

Single Precursor-Derived Sub-1 nm MoCo Bimetallic Particles Decorated on Phosphide-Carbon Nitride Framework for Sustainable Hydrogen Generation.

ACS Appl Mater Interfaces

January 2025

Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.

The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.

View Article and Find Full Text PDF

Xanthan gum (XG), recognized for its environmentally friendly properties and versatile capabilities, has been studied for drilling fluid applications. However, its limited solubility and thermal stability restricts its broader use. In this study, a modified XG derivative, XG-g-KH570 modified SiO, was synthesized by grafting XG with KH570-modified nano-SiO.

View Article and Find Full Text PDF

Porous Nanoframe Based Plasmonic Structure With High-Density Hotspots for the Quantitative Detection of Gaseous Benzaldehyde.

Small

January 2025

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.

Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!