Caloric restriction (CR) is a dietary intervention known to enhance cardiovascular health. The glucose analog 2-deoxy-D-glucose (2-DG) mimics CR effects in several animal models. However, whether 2-DG is beneficial to the heart remains obscure. Here, we tested the ability of 2-DG to reduce cardiomyocyte death triggered by doxorubicin (DOX, 1 μm), an antitumor drug that can cause heart failure. Treatment of neonatal rat cardiomyocytes with 0.5 mm 2-DG dramatically suppressed DOX cytotoxicity as indicated by a decreased number of cells that stained positive for propidium iodide and reduced apoptotic markers. 2-DG decreased intracellular ATP levels by 17.9%, but it prevented DOX-induced severe depletion of ATP, which may contribute to 2-DG-mediated cytoprotection. Also, 2-DG increased the activity of AMP-activated protein kinase (AMPK). Blocking AMPK signaling with compound C or small interfering RNA-mediated knockdown of the catalytic subunit markedly attenuated the protective effects of 2-DG. Conversely, AMPK activation by pharmacological or genetic approach reduced DOX cardiotoxicity but did not produce additive effects when used together with 2-DG. In addition, 2-DG induced autophagy, a cellular degradation pathway whose activation could be either protective or detrimental depending on the context. Paradoxically, despite its ability to activate autophagy, 2-DG prevented DOX-induced detrimental autophagy. Together, these results suggest that the CR mimetic 2-DG can antagonize DOX-induced cardiomyocyte death, which is mediated through multiple mechanisms, including the preservation of ATP content, the activation of AMPK, and the inhibition of autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121344PMC
http://dx.doi.org/10.1074/jbc.M111.225805DOI Listing

Publication Analysis

Top Keywords

cardiomyocyte death
12
2-dg
11
caloric restriction
8
multiple mechanisms
8
prevented dox-induced
8
effects 2-dg
8
restriction mimetic
4
mimetic 2-deoxyglucose
4
2-deoxyglucose antagonizes
4
antagonizes doxorubicin-induced
4

Similar Publications

Cardiac diseases remain one of the leading causes of death globally, often linked to ischemic conditions that can affect cellular homeostasis and metabolism, which can lead to the development of cardiovascular dysfunction. Considering the effect of ischemic cardiomyopathy on the global population, it is vital to understand the impact of ischemia on cardiac cells and how ischemic conditions change different cellular functions through post-translational modification of cellular proteins. : To understand the cellular function and fine-tuning during stress, we established an ischemia model using neonatal rat ventricular cardiomyocytes.

View Article and Find Full Text PDF

Syntaxin 4-enhanced plasma membrane repair isindependent of dysferlin in skeletal muscle.

Am J Physiol Cell Physiol

December 2024

Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.

Plasma membrane repair (PMR) restores membrane integrity of cells, preventing cell death in vital organs, and has been studied extensively in skeletal muscle. Dysferlin, a sarcolemmal Ca-binding protein, plays a crucial role in PMR in skeletal muscle. Previous studies have suggested that PMR employs membrane trafficking and membrane fusion, similar to neurotransmission.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) treatment have shown high efficacy for about 15 cancer types. However, this therapy is only effective in 20-30% of cancer patients. Thus, the precise biomarkers of ICI response are an urgent need.

View Article and Find Full Text PDF

Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death.

View Article and Find Full Text PDF

Heart failure (HF) syndrome is of great interest as an emerging epidemic. Due to the increasing elderly population worldwide, the total number of HF patients is increasing every day. This disease places a significant economic burden on the healthcare and treatment systems of developing societies, and this situation is very concerning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!