Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum.

J Insect Sci

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China.

Published: August 2011

Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was ∼72 and ∼120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After ∼120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281299PMC
http://dx.doi.org/10.1673/031.011.0109DOI Listing

Publication Analysis

Top Keywords

alkaline phosphatase
32
phosphatase activity
24
vaporariorum
11
b-biotype
10
alkaline
8
phosphatase
8
bemisia tabaci
8
trialeurodes vaporariorum
8
b-biotype physiologically
8
physiologically superior
8

Similar Publications

Comparison of osseointegration in commercial SLA-treated dental implants with different surface roughness: a pilot study in beagle dogs.

J Adv Prosthodont

December 2024

Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.

Purpose: This pilot study investigated the effect of surface roughness on osseointegration by comparing two types of commercial SLA-treated dental implants with different surface roughness levels: moderately rough (S = 1 - 2 µm) and rough surfaces (S > 2 µm).

Materials And Methods: Two implant groups were studied: TS (rough surface) and ADD (moderately rough surface) groups. Surface characteristics were analyzed using optical profilometry and SEM.

View Article and Find Full Text PDF

Alveolar ridge loss presents difficulties for implant placement and stability. To address this, alveolar ridge preservation (ARP) is required to maintain bone and avoid the need for ridge augmentation using socket grafting. In this study, a scaffold for ARP was created by fabricating a 3D porous dense microfiber silk fibroin (mSF) embedded in poly(vinyl alcohol) (PVA), which mimics the osteoid template.

View Article and Find Full Text PDF

Curcumin, as an antioxidant agent, has been proposed as a potential treatment for nonalcoholic fatty liver disease (NAFLD). The aim of the current systematic review and meta-analysis was to summarize earlier findings regarding the effect of curcumin supplementation on liver enzymes and ALP in NAFLD patients. All studies published up to November 18, 2022, were searched through the PubMed, SCOPUS, and Web of Science databases to collect all randomized clinical trials (RCTs) on NAFLD patients in which curcumin was used as a treatment.

View Article and Find Full Text PDF

Risk Factors Predicting Outcomes in Advanced Upper Gastrointestinal Cancers Treated With Immune Checkpoint Inhibitors.

Gastroenterology Res

December 2024

Division of Medical Oncology, Department of Internal Medicine, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.

Background: Immune checkpoint inhibitors (ICIs) have moved to the frontline in recent years to manage upper gastrointestinal (UGI) tumors, such as esophageal and gastric cancers. This retrospective review sheds light on real-world data on ICI-treated UGI tumors to identify risk factors (clinical and pathological) impacting the outcome other than traditional biomarkers (programmed cell death ligand 1 (PD-L1) or microsatellite instability status).

Methods: Patients with UGI tumors who received at least one dose of ICI for stage IV or recurrent disease between January 1, 2015, and July 31, 2021, at The Ohio State University were included in the study.

View Article and Find Full Text PDF

Pretargeted Multimodal Tumor Imaging by Enzymatic Self-Immobilization Labeling and Bioorthogonal Reaction.

J Am Chem Soc

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.

Covalent modification of cell membranes has shown promise for tumor imaging and therapy. However, existing membrane labeling techniques face challenges such as slow kinetics and poor selectivity for cancer cells, leading to off-target effects and suboptimal efficacy. Here, we present an enzyme-triggered self-immobilization labeling strategy, termed E-SIM, which enables rapid and selective labeling of tumor cell membranes with bioorthogonal trans-cycloctene (TCO) handles .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!