Purpose: This study presents and validates a novel (non-ECG-triggered) MRI sequence based on spatial modulation of the magnetization (SPAMM) to noninvasively measure 3D (quasistatic) soft tissue deformations using only six acquisitions (three static and three indentations). In the current SPAMM tagged MRI approaches, data are typically constructed from many repeated motion cycles. This has so far restricted its application to the measurement of highly repeatable and periodic movements (e.g., cardiac deformation). In biomechanical applications where soft tissue deformation is artificially induced, often by indentation, significant repeatability constraints exist, and for clinical applications, discomfort and health issues generally preclude a large number of repetitions.
Methods: A novel (non-ECG-triggered) SPAMM tagged MRI sequence is presented, whereby a single 1-1 (first order) SPAMM set is acquired following a 3D transient field echo acquisition. Full 3D deformation measurement is achieved through the combination of only six acquisitions (three static and three motion cycles). The 3D deformation measurements were validated using quasistatic indentation tests and marker tracking in a silicone gel soft tissue phantom. In addition, the technique's ability to measure 3D soft tissue deformation in vivo was evaluated using indentation of the biceps region of the upper arm in a volunteer.
Results: Following comparison to marker tracking in the silicone gel phantom, the SPAMM tagged MRI based displacement measurement demonstrated subvoxel accuracy with a mean displacement difference of 72 microm and a standard deviation of 289 microm. In addition, precision of displacement magnitude was evaluated for both the phantom and the volunteer data. The standard deviations of the displacement magnitude with respect to the average displacement magnitude were 75 and 169 microm for the phantom and volunteer data, respectively.
Conclusions: The subvoxel accuracy and precision demonstrated in the phantom in combination with the precision comparison between the phantom and the volunteer data provide confidence in the methods presented for measurement of soft tissue deformation in vivo. To the author's knowledge, since only six acquisitions are required, the presented methodology is the fastest SPAMM tagged MRI method currently available for the noninvasive measurement of quasistatic 3D soft tissue deformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.3533942 | DOI Listing |
Radiat Oncol
January 2025
German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
Background: For radiotherapy of head and neck cancer (HNC) magnetic resonance imaging (MRI) plays a pivotal role due to its high soft tissue contrast. Moreover, it offers the potential to acquire functional information through diffusion weighted imaging (DWI) with the potential to personalize treatment. The aim of this study was to acquire repetitive DWI during the course of online adaptive radiotherapy on an 1.
View Article and Find Full Text PDFBMC Palliat Care
January 2025
Palliative Care Unit, National Cancer Institute, Rio de Janeiro, Brazil.
Objective: To compare the sociodemographic and clinical profiles of patients with advanced cancer admitted to a tertiary palliative care unit before and during the COVID-19 pandemic.
Methods: This is an analysis of data from patients receiving care before (10/21/2019 to 03/16/2020) and during (09/23/2020 to 08/26/2021) the COVID-19 pandemic. Sociodemographic and clinical data were evaluated.
Insights Imaging
January 2025
Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), Zurich, Switzerland.
Objectives: To determine whether deep learning-based reconstructions of zero-echo-time (ZTE-DL) sequences enhance image quality and bone visualization in cervical spine MRI compared to traditional zero-echo-time (ZTE) techniques, and to assess the added value of ZTE-DL sequences alongside standard cervical spine MRI for comprehensive pathology evaluation.
Methods: In this retrospective study, 52 patients underwent cervical spine MRI using ZTE, ZTE-DL, and T2-weighted 3D sequences on a 1.5-Tesla scanner.
Nat Mater
January 2025
School of Chemistry, Beihang University, Beijing, China.
The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor.
View Article and Find Full Text PDFSci Rep
January 2025
Department of General Surgery, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
Ganglion cysts are benign soft tissue tumors that commonly occur in the joints, especially the wrist. Surgical excision and steroid injection are the two main treatment options; however, their efficacy remains unclear. This prospective interventional control trial included 54 patients with ganglion cysts treated between March 2023 and March 2024 at Saveetha Medical College Hospital, Chennai.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!